986 resultados para Molecular Size
Resumo:
Anew thermodynamic approach has been developed in this paper to analyze adsorption in slitlike pores. The equilibrium is described by two thermodynamic conditions: the Helmholtz free energy must be minimal, and the grand potential functional at that minimum must be negative. This approach has led to local isotherms that describe adsorption in the form of a single layer or two layers near the pore walls. In narrow pores local isotherms have one step that could be either very sharp but continuous or discontinuous benchlike for a definite range of pore width. The latter reflects a so-called 0 --> 1 monolayer transition. In relatively wide pores, local isotherms have two steps, of which the first step corresponds to the appearance of two layers near the pore walls, while the second step corresponds to the filling of the space between these layers. All features of local isotherms are in agreement with the results obtained from the density functional theory and Monte Carlo simulations. The approach is used for determining pore size distributions of carbon materials. We illustrate this with the benzene adsorption data on activated carbon at 20, 50, and 80 degreesC, argon adsorption on activated carbon Norit ROX at 87.3 K, and nitrogen adsorption on activated carbon Norit R1 at 77.3 K.
Resumo:
A theoretical analysis of adsorption of mixtures containing subcritical adsorbates into activated carbon is presented as an extension to the theory for pure component developed earlier by Do and coworkers. In this theory, adsorption of mixtures in a pore follows a two-stage process, similar to that for pure component systems. The first stage is the layering of molecules on the surface, with the behavior of the second and higher layers resembling to that of vapor-liquid equilibrium. The second stage is the pore-filling process when the remaining pore width is small enough and the pressure is high enough to promote the pore filling with liquid mixture having the same compositions as those of the outermost molecular layer just prior to pore filling. The Kelvin equation is applied for mixtures, with the vapor pressure term being replaced by the equilibrium pressure at the compositions of the outermost layer of the liquid film. Simulations are detailed to illustrate the effects of various parameters, and the theory is tested with a number of experimental data on mixture. The predictions were very satisfactory.
Resumo:
The efficacy of chloroquine treatment of uncomplicated Plasmodium falciparum malaria in East Timor was investigated via molecular tools. Genotyping of the polymorphic markers msp1 and msp2 was performed to investigate the number and type of parasite alleles in pre- and posttreatment blood samples collected from 48 patients. Patients were infected with a minimum of 8 msp1 and 14 msp2 allelic types of parasite, and 43% of the patients had more than one allelic type before treatment. The genotyping also revealed that 66.7% of the patients were infected with at least one identical allelic type of parasite before and after treatment and therefore were likely to have experienced recrudescence. All parasites in pre- and posttreatment blood samples carried the K76T mutation in pfcrt, regardless of the clinical response to chloroquine. The sequence polymorphism patterns in pfcrt in the majority of parasites examined were identical to those observed in Bougainville, Papua New Guinea.
Resumo:
Distinct Echinococcus granulosus life cycle patterns have been described in North America: domestic and sylvatic. Gene sequences of the sylvatic E. granulosus indicate that it represents a separate variant. Case-based data have suggested that the course of sylvatic disease is less severe than that of domestic disease. which led to the recommendation to treat cystic echinococcosis patients in the Arctic by careful medical management rather than by aggressive surgery. We recently reported the first two documented E. granalosus human cases in Alaska with accompanying severe sequelae. Here we describe the results of molecular genetic analysis of the cyst material of one of the subjects that supported identification of the parasite as the sylvatic (cervid) strain and not the domestic (common sheep strain), which was initially thought to be implicated in these unusually severe Alaskan cases.
Resumo:
Chemotherapy is central to the control of many parasite infections of both medical and veterinary importance. However, control has been compromised by the emergence of drug resistance in several important parasite species. Such parasites cover a broad phylogenetic range and include protozoa, helminths and arthropods. In order to achieve effective parasite control in the future, the recognition and diagnosis of resistance will be crucial. This demand for early, accurate diagnosis of resistance to specific drugs in different parasite species can potentially be met by modern molecular techniques. This paper summarises the resistance status of a range of important parasites and reviews the available molecular techniques for resistance diagnosis. Opportunities for applying successes in some species to other species where resistance is less well understood are explored. The practical application of molecular techniques and the impact of the technology on improving parasite control are discussed. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Plasma concentrations of growth hormone (GH) were measured in the brushtail possum (Trichosurus vulpecula) pouch young from 25 through to 198 days post-partum (n=71). GH concentrations were highest early in pouch life (around 100 ng/ml), and thereafter declined in an exponential fashion to reach adult concentrations (10.8 +/- 1.8 ng/ml; n=21) by approximately 121-145 days post-partum, one to two months before the young is weaned. Growth hormone-binding protein (GHBP), which has been shown to modify the cellular actions of GH in eutherian mammals, was identified for the first time in a marsupial. Based on size exclusion gel filtration, possum GHBP had an estimated molecular mass of approximate to 65 kDa, similar to that identified in other mammalian species, and binding of I-125-labelled human GH (hGH) was displaced by excess hGH (20 mug). An immunoprecipitation method, in which plasma GHBP was rendered polyethylene glycol precipitable with a monoclonal antibody to the rabbit GHBP/GH receptor (MAb 43) and labelled with I-125-hGH, was used to quantitate plasma GHBP by Scatchard analysis in the developing (pooled plasma samples) and adult (individual animals) possums. Binding affinity (K-a) values in pouch young aged between 45 and 54 and 144 and 153 days post-partum varied between 1.0 and 2.4 x 10(9)/M, which was slightly higher than that in adult plasma (0.96 +/- 0.2 x 10(9)/M, n = 6). Binding capacity (B-max) values increased from non-detectable levels in animals aged 25-38 days post-partum to reach concentrations around half that seen in the adult (1.4 +/- 0.2 x 10(-9) M) by about 117 days post-partum and remained at this level until 153 days post-partum. Therefore, in early pouch life when plasma GH concentrations are highest, the very low concentrations of GHBP are unlikely to be important in terms of competing with GH-receptor for ligand or altering the half-life of circulating GH.
Resumo:
Almost 50 years after the first sighting of small pits that covered the surface of mammalian cells, investigators are now getting to grips with the detailed workings of these enigmatic structures that we now know as caveolae.
Resumo:
The aim of the study was to investigate the role of glutamate residue 113 in transmembrane domain 2 of the human noradrenaline transporter in determining cell surface expression and functional activity. This residue is absolutely conserved in all members of the Na+- and Cl--dependent transporter family. Mutations to alanine (hE113A), aspartate (hE113D) and glutamine (hE113Q) were achieved by site-directed mutagenesis and the mutants were expressed in transfected COS-7 or HEK-293 cells. Cell surface expression of IIE113A and hE113D, but not hE113Q, was markedly reduced compared with wild type, and functional noradrenaline uptake was detected only for the hE113Q mutant. The pharmacological properties of the hE113Q mutant showed very little change compared with wild type, except for a decrease in V-max values for noradrenaline and dopamine uptake of 2-3-fold. However, the hE113D mutant showed very marked changes in its properties, compared with wild type, with 82-260-fold decreases in the affinities of the substrates, noradrenaline, dopamine and MPP+, and increased Na+ affinity for stimulation of nisoxetine binding. The results of the study show that the size and not the charge of the 113 glutamate residue of the noradrenaline transporter seems to be the most critical factor for maintenance of transporter function and surface expression.
Resumo:
Approximately half of the motoneurons generated during normal embryonic development undergo programmed cell death. Most of this death occurs during the time when synaptic connections are being formed between motoneurons and their target, skeletal muscle. Subsequent muscle activity stemming from this connection helps determine the final number of surviving motoneurons. These observations have given rise to the idea that motoneuron survival is dependent upon access to muscle derived trophic factors, presumably through intact neuromuscular synapses. However, it is not yet understood how the muscle regulates the supply of such trophic factors, or if there are additional mechanisms operating to control the fate of the innervating motoneuron. Recent observations have highlighted target independent mechanisms that also operate to support the survival of motoneurons, such as early trophic-independent periods of motoneuron death, trophic factors derived from Schwann cells and selection of motoneurons during pathfinding. Here we review recent investigations into motoneuron cell death when the molecular signalling between motoneurons and muscle has been genetically disrupted. From these studies, we suggest that in addition to trophic factors from muscle and/or Schwann cells, specific adhesive interactions between motoneurons and muscle are needed to regulate motoneuron survival. Such interactions, along with intact synaptic basal lamina, may help to regulate the supply and presentation of trophic factors to motoneurons.
Resumo:
The effects of wing shape, wing size, and fluctuating asymmetry in these measures oil the field fitness of T. nr. brassicae and T. pretiosum were investigated. Trichogramma wasps mass-reared on eggs of the factitious host Sitotroga cerealella were released in tomato paddocks and those females ovipositing on Helicoverpo spp. eggs were recaptured. Comparisons of the recaptured group with a sample from the release population were used to assess fitness. Wing data were obtained by positioning landmarks on mounted forewings. Size was then measured as the centroid size computed from landmark distances, while Procrustes analysis followed by principal component analysis was used to assess wing shape. Similar findings were obtained for both Trichogramma species: fitness of wasps was strongly related to wing size and some shape dimensions, but not to the asymmetries of these measures. Wasps which performed well in the field had larger wings and a different wing shape compared to wasps from the mass reared population. Both size and the shape dimensions were linearly associated with fitness although there was also some evidence for non-linear selection on shape. The results suggest that wing shape and wing size are reliable predictors of field fitness for these Trichogramma wasps.
Resumo:
Coral reefs are one of the most diverse habitats in the world [1], yet our understanding of the processes affecting their biodiversity is limited [1-3]. At the local scale, cleaner fish are thought to have a disproportionate effect, in relation to their abundance and size, on the activity of many other fish species, but confirmation of this species' effect on local fish diversity has proved elusive. The cleaner fish Labroides dimidiatus has major effects on fish activity patterns [4] and may indirectly affect fish demography through the removal of large numbers of parasites [5, 6]. Here we show that small reefs where L. dimidiatus had been experimentally excluded for 18 months had half the species diversity of fish and one-fourth the abundance of individuals. Only fish that move among reefs, however, were affected. These fish include large species that themselves can affect other reef organisms [2, 7]. In contrast, the distribution of resident fish was not affected by cleaner fish. Thus, many fish appear to choose reefs based on the presence of cleaner fish. Our findings indicate that a single small [8] and not very abundant [9] fish has a strong influence on the movement patterns, habitat choice, activity, and local diversity and abundance of a wide variety of reef fish species.
Resumo:
What causes species richness to vary among different groups of organisms? Two hypotheses are that large geographical ranges and fast life history either reduce extinction rates or raise speciation rates, elevating a clade's rate of diversification. Here we present a comparative analysis of these hypotheses using data on the phylogenetic relationships, geographical ranges and life history of the terrestrial mammal fauna of Australia. By comparing species richness patterns to null models, we show that species are distributed nonrandomly among genera. Using sister-clade comparisons to control for clade age, we then find that faster diversification is significantly associated with larger geographical ranges and larger litters, but there is no evidence for an effect of body size or age at first breeding on diversification rates. We believe the most likely explanation for these patterns is that larger litters and geographical ranges increase diversification rates because they buffer species from extinction. We also discuss the possibility that positive effects of litter size and range size on diversification rates result from elevated speciation rates.
Resumo:
Molecular breeding is becoming more practical as better technology emerges. The use of molecular markers in plant breeding for indirect selection of important traits can favorably impact breeding efficiency. The purpose of this research is to identify quantitative trait loci (QTL) on molecular linkage groups (MLG) which are associated with seed protein concentration, seed oil concentration, seed size, plant height, lodging, and maturity, in a population from a cross between the soybean cultivars 'Essex' and 'Williams.' DNA was extracted from F-2 generation soybean leaves and amplified via polymerase chain reaction (PCR) using simple sequence repeat (SSR) markers. Markers that were polymorphic between the parents were analyzed against phenotypic trait data from the F-2 and F-4:6 generation. For the F-2 population, significant additive QTL were Satt540 (MLG M, maturity, r(2)=0.11; height, r(2)=0.04, seed size, r(2)=0.061, Satt373 (MLG L, seed size, r(2)=0.04; height, r(2)=0.14), Satt50 (MLG A1, maturity r(2)=0.07), Satt14 (MLG D2, oil, r(2)=0.05), and Satt251 (protein r(2)=0.03, oil, r(2)=0.04). Significant dominant QTL for the F-2 population were Satt540 (MLG M, height, r(2)=0.04; seed size, r(2)=0.06) and Satt14 (MLG D2, oil, r(2)=0.05). In the F-4:6 generation significant additive QTL were Satt239 (MLG I, height, r(2)=0.02 at Knoxville, TN and r(2)=0.03 at Springfield, TN), Satt14 (MLG D2, seed size, r(2)=0.14 at Knoxville, TN), Satt373 (MLG L, protein, r(2)=0.04 at Knoxville, TN) and Satt251 (MLG B I, lodging r(2)=0.04 at Springfield, TN). Averaged over both environments in the F-4:6 generation, significant additive QTL were identified as Satt251 (MLG B 1, protein, r(2)=0.03), and Satt239 (MLG 1, height, r(2)=0.03). The results found in this study indicate that selections based solely on these QTL would produce limited gains (based on low r(2) values). Few QTL were detected to be stable across environments. Further research to identify stable QTL over environments is needed to make marker-assisted approaches more widely adopted by soybean breeders.
Resumo:
Why does species richness vary so greatly across lineages? Traditionally, variation in species richness has been attributed to deterministic processes, although it is equally plausible that it may result from purely stochastic processes. We show that, based on the best available phylogenetic hypothesis, the pattern of cladogenesis among agamid lizards is not consistent with a random model, with some lineages having more species, and others fewer species, than expected by chance. We then use phylogenetic comparative methods to test six types of deterministic explanation for variation in species richness: body size, life history, sexual selection, ecological generalism, range size and latitude. Of eight variables we tested, only sexual size dimorphism and sexual dichromatism predicted species richness. Increases in species richness are associated with increases in sexual dichromatism but reductions in sexual size dimorphism. Consistent with recent comparative studies, we find no evidence that species richness is associated with small body size or high fecundity. Equally, we find no evidence that species richness covaries with ecological generalism, latitude or range size.