989 resultados para Molacular configuration


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uncorrelated random scale-free networks are useful null models to check the accuracy and the analytical solutions of dynamical processes defined on complex networks. We propose and analyze a model capable of generating random uncorrelated scale-free networks with no multiple and self-connections. The model is based on the classical configuration model, with an additional restriction on the maximum possible degree of the vertices. We check numerically that the proposed model indeed generates scale-free networks with no two- and three-vertex correlations, as measured by the average degree of the nearest neighbors and the clustering coefficient of the vertices of degree k, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic properties of Fe nanodots are simulated using a scaling technique and Monte Carlo method, in good agreement with experimental results. For the 20-nm-thick dots with diameters larger than 60¿nm, the magnetization reversal via vortex state is observed. The role of magnetic interaction between dots in arrays in the reversal process is studied as a function of nanometric center-to-center distance. When this distance is more than twice the dot diameter, the interaction can be neglected and the magnetic properties of the entire array are determined by the magnetic configuration of the individual dots. The effect of crystalline anisotropy on the vortex state is investigated. For arrays of noninteracting dots, the anisotropy strongly affects the vortex nucleation field and coercivity, and only slightly affects the vortex annihilation field

Relevância:

10.00% 10.00%

Publicador:

Resumo:

he number of deer-vehicle accidents in Iowa and around the country has steadily increased during the past 30 years. This i s basically due to: ( 1 ) increased volume of traffic; 12) an expanding network of hard surface roads, especially 4 lane interstates; and (3) a general increase in deer populations. Initidtion of a 55 MPH speed limit in 1974 and gasoline shortages in 1975 reduced deer-vehicle accident rates briefly, but since 1975, rates have continued to climb. Various methods of reducinq these accidents have been attempted in other states. These include: instal lation of rc?flective devlres, deer crossing signs, fencing, underpasses, clearing right--of--waysa,n d controlled hunting to reduce deer population s i z e . These methods have met with varying degrees of success, depending on animal behavior, deet- population fluctuations, method used, topoyr-aphy, road-side vegetation, traffic patterns, and highway configuration. This project was designed to evaluate a new ntethod of reducing deer-vehicle accidents. There are qenerally 4 important aspects of deer-vehicle accidents: danger to human l i f e , vehicle damage, loss of a valuable wildlife resource, and cost of processing accident reports. In !owe, during 1983, there were over 15,OOC) reported deer--vehicle accidents and probably many more that were not reported (Gladfelter 1984). The extent of human injury or death in Iowa i s not known, but studies in southern Michigan show that human injur ies occurred in about 4% of the deer-vehicle accidents (A1 lcn and MrCullough 1976). T h i s would indicate that in Iowa there could have been 200 human injury cases from deer-vehicle accidents i n 1983. These injuries usual 1 occur from secondary collisions when motorists try to avoid a deer on the highway, and hit some other object Vehicle darnaye from these accidents can into thousands of dollars because of the high speed involved and the size of the animal. The total amount of vehicle damage occurring in Iowa is unknown, but if the average vehicle damage was between $500-$800 per accident, estimated property damage would be between $2 1/2--$4 million annually. The value of deer lost in these accidents cannot be estimated, but recreational potential of this natural resource is surely diminished for hunters and wildlife enthusiasts. Also, there ir a great deal of money spent by governmental agencies for manpower to process accident reports and remove dead animals from highways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Load Rating: . , :Evaluation of the capacity of a bridge to carry vehicle Inventory Rating: Lbad level which can safely utilize the bridge for an indefinite period of time Operating Rating: Absolute maximum permissible load level for the bridge A load rating states the load in tons which a vehicle can impose on a bridge. Changes in guidelines, standards, and customary uses of bridges require analyses of bridges to be updated and re-evaluated. In this report, twenty-two secondary bridge standards for three types of bridges are rated for the AASHTO HS20-44 vehicle configuration and three typical Iowa legal vehicles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By means of the ab initio cluster-model approach, we present theoretical evidence for two different mechanisms of bonding of atomic Al to Si(111). On the atop site (T1) the interaction of atomic Al to Si(111) is characteristic of an ionic bond whereas interaction above the threefold eclipsed site (T4) leads to the formation of a typical covalent bond. Moreover, both sites have a similar interaction energy if electronic correlation effects are included. While the conclusions regarding the nature of the chemisorption bond in the two sites do not depend either on the cluster-model size, the kind of embedding hydrogen atoms used, or the quality of the wave function (Hartree-Fock or configuration interaction), the chemisorption energy depends strongly on the wave function used. In fact, inclusion of correlation energy is necessary to properly describe the interaction energies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Finite cluster models and a variety of ab initio wave functions have been used to study the electronic structure of bulk KNiF3. Several electronic states, including the ground state and some charge-transfer excited states, have been considered. The study of the cluster-model wave functions has permitted an understanding of the nature of the chemical bond in the electronic ground state. This is found to be highly ionic and the different ionic and covalent contributions to the bonding have been identified and quantified. Finally, we have studied the charge-transfer excited states leading to the optical gap and have found that calculated and experimental values are in good agreement. The wave functions corresponding to these excited states have also been analyzed and show that although KNiF3 may be described as a ligand-to-metal charge-transfer insulator there is a strong configuration mixing with the metal-to-metal charge-transfer states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of different correlation functionals has been tested for alkali metals, Li to Cs, interacting with cluster models simulating different active sites of the Si(111) surface. In all cases, the ab initio Hartree-Fock density has been obtained and used as a starting point. The electronic correlation energy is then introduced as an a posteriori correction to the Hartree-Fock energy using different correlation functionals. By making use of the ionic nature of the interaction and of different dissociation limits we have been able to prove that all functionals tested introduce the right correlation energy, although to a different extent. Hence, correlation functionals appear as an effective and easy way to introduce electronic correlation in the ab initio Hartree-Fock description of the chemisorption bond in complex systems where conventional configuration interaction techniques cannot be used. However, the calculated energies may differ by some tens of eV. Therefore, these methods can be employed to get a qualitative idea of how important correlation effects are, but they have some limitations if accurate binding energies are to be obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CuF2 is known to be an antiferromagnetic compound with a weak ferromagnetism due to the anisotropy of its monoclinic unit cell (Dzialoshinsky-Moriya mechanism). We investigate the magnetic ordering of this compound by means of ab initio periodic unrestricted Hartree-Fock calculations and by cluster calculations which employ state-of-the-art configuration interaction expansions and modern density functional theory techniques. The combined use of periodic and cluster models permits us to firmly establish that the antiferromagnetic order arises from the coupling of one-dimensional subunits which themselves exhibit a very small ferromagnetic coupling between Cu neighbor cations. This magnetic order could be anticipated from the close correspondence between CuF2 and rutile crystal structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ab initio cluster model approach has been used to study the electronic structure and magnetic coupling of KCuF3 and K2CuF4 in their various ordered polytype crystal forms. Due to a cooperative Jahn-Teller distortion these systems exhibit strong anisotropies. In particular, the magnetic properties strongly differ from those of isomorphic compounds. Hence, KCuF3 is a quasi-one-dimensional (1D) nearest neighbor Heisenberg antiferromagnet whereas K2CuF4 is the only ferromagnet among the K2MF4 series of compounds (M=Mn, Fe, Co, Ni, and Cu) behaving all as quasi-2D nearest neighbor Heisenberg systems. Different ab initio techniques are used to explore the magnetic coupling in these systems. All methods, including unrestricted Hartree-Fock, are able to explain the magnetic ordering. However, quantitative agreement with experiment is reached only when using a state-of-the-art configuration interaction approach. Finally, an analysis of the dependence of the magnetic coupling constant with respect to distortion parameters is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetic coupling constant of selected cuprate superconductor parent compounds has been determined by means of embedded cluster model and periodic calculations carried out at the same level of theory. The agreement between both approaches validates the cluster model. This model is subsequently employed in state-of-the-art configuration interaction calculations aimed to obtain accurate values of the magnetic coupling constant and hopping integral for a series of superconducting cuprates. Likewise, a systematic study of the performance of different ab initio explicitly correlated wave function methods and of several density functional approaches is presented. The accurate determination of the parameters of the t-J Hamiltonian has several consequences. First, it suggests that the appearance of high-Tc superconductivity in existing monolayered cuprates occurs with J/t in the 0.20¿0.35 regime. Second, J/t=0.20 is predicted to be the threshold for the existence of superconductivity and, third, a simple and accurate relationship between the critical temperatures at optimum doping and these parameters is found. However, this quantitative electronic structure versus Tc relationship is only found when both J and t are obtained at the most accurate level of theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of the bridging ligand on the effective Heisenberg coupling parameters is analyzed in detail. This analysis strongly suggests that the ligand-to-metal charge transfer excitations are responsible for a large part of the final value of the magnetic coupling constant. This permits us to suggest a variant of the difference dedicated configuration interaction (DDCI) method, presently one of the most accurate and reliable for the evaluation of magnetic effective interactions. This method treats the bridging ligand orbitals mediating the interaction at the same level than the magnetic orbitals and preserves the high quality of the DDCI results while being much less computationally demanding. The numerical accuracy of the new approach is illustrated on various systems with one or two magnetic electrons per magnetic center. The fact that accurate results can be obtained using a rather reduced configuration interaction space opens the possibility to study more complex systems with many magnetic centers and/or many electrons per center.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural settings and lithological characteristics are traditionally assumed to influence the development of erosional landforms, such as gully networks and rock couloirs, in steep mountain rock basins. The structural control of erosion of two small alpine catchments of distinctive rock types is evaluated by comparing the correspondences between the orientations of their gullies and rock couloirs with (1) the sliding orientations of potential slope failures mechanisms, and (2) the orientation of the maximum joint frequency, this latter being considered as the direction exploited primarily by erosion and mass wasting processes. These characteristic orientations can be interpreted as structural weaknesses contributing to the initiation and propagation of erosion. The morphostructural analysis was performed using digital elevation models and field observations. The catchment comprised of magmatic intrusive rocks shows a clear structural control, mostly expressed through potential wedges failure. Such joint configurations have a particular geometry that encourages the development of gullies in hard rock, e.g. through enhanced gravitational and hydrological erosional processes. In the catchment underlain by sedimentary rocks, penetrative joints that act as structural weaknesses seem to be exploited by gullies and rock couloirs. However, the lithological setting and bedding configuration prominently control the development of erosional landforms, and influence not only the local pattern of geomorphic features, but the general morphology of the catchment. The orientations of the maximum joint frequency are clearly associated with the gully network, suggesting that its development is governed by anisotropy in rock strength. These two catchments are typical of bedrock-dominated basins prone to intense processes of debris supply. This study suggests a quantitative approach for describing the relationship between bedrock jointing and geomorphic features geometry. Incorporation of bedrock structure can be relevant when studying processes governing the transfer of clastic material, for the assessment of sediment yields and in landforms evolution models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the dynamics of a water-oil meniscus moving from a smaller to a larger pore. The process is characterised by an abrupt change in the configuration, yielding a sudden energy release. A theoretic study for static conditions provides analytical solutions of the surface energy content of the system. Although the configuration after the sudden energy release is energetically more convenient, an energy barrier must be overcome before the process can happen spontaneously. The energy barrier depends on the system geometry and on the flow parameters. The analytical results are compared to numerical simulations that solve the full Navier-Stokes equation in the pore space and employ the Volume Of Fluid (VOF) method to track the evolution of the interface. First, the numerical simulations of a quasi-static process are validated by comparison with the analytical solutions for a static meniscus, then numerical simulations with varying injection velocity are used to investigate dynamic effects on the configuration change. During the sudden energy jump the system exhibits an oscillatory behaviour. Extension to more complex geometries might elucidate the mechanisms leading to a dynamic capillary pressure and to bifurcations in final distributions of fluid phases in porous

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Canine distemper virus (CDV), a mobillivirus related to measles virus causes a chronic progressive demyelinating disease, associated with persistence of the virus in the central nervous system (CNS). CNS persistence of morbilliviruses has been associated with cell-to-cell spread, thereby limiting immune detection. The mechanism of cell-to-cell spread remains uncertain. In the present study we studied viral spread comparing a cytolytic (non-persistent) and a persistent CDV strain in cell cultures. Cytolytic CDV spread in a compact concentric manner with extensive cell fusion and destruction of the monolayer. Persistent CDV exhibited a heterogeneous cell-to-cell pattern of spread without cell fusion and 100-fold reduction of infectious viral titers in supernatants as compared to the cytolytic strain. Ultrastructurally, low infectious titers correlated with limited budding of persistent CDV as compared to the cytolytic strain, which shed large numbers of viral particles. The pattern of heterogeneous cell-to-cell viral spread can be explained by low production of infectious viral particles in only few areas of the cell membrane. In this way persistent CDV only spreads to a small proportion of the cells surrounding an infected one. Our studies suggest that both cell-to-cell spread and limited production of infectious virus are related to reduced expression of fusogenic complexes in the cell membrane. Such complexes consist of a synergistic configuration of the attachment (H) and fusion (F) proteins on the cell surface. F und H proteins exhibited a marked degree of colocalization in cytolytic CDV infection but not in persistent CDV as seen by confocal laser microscopy. In addition, analysis of CDV F protein expression using vaccinia constructs of both strains revealed an additional large fraction of uncleaved fusion protein in the persistent strain. This suggests that the paucity of active fusion complexes is due to restricted intracellular processing of the viral fusion protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present state-of-the-art dual-wavelength digital holographic microscopy (DHM) measurement on a calibrated 8.9 nm high chromium thin step sample and demonstrate sub-nanometer axial accuracy. By using a modified DHM reference calibrated hologram (RCH) reconstruction method, a temporal averaging procedure and a specific dual-wavelength DHM arrangement, it is shown that specimen topography can be measured with an accuracy, defined as the axial standard deviation, reduced to at least 0.9 nm. Indeed for the first time to the best of our knowledge, it is reported that averaging each of the two wavefronts recorded with real-time dual-wavelength DHM can provide up to 30% spatial noise reduction for the given configuration. Moreover, the presented experimental configuration achieves a temporal stability below 0.8 nm, thus paving the way to Angström range for dual-wavelength DHM.