955 resultados para Modulated Fields


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the analysis of 15 pharmaceutical compounds, belonging to different therapeutic classes (anti-inflammatory/analgesics, lipid regulators, antiepileptics, ?-blockers and antidepressants) and with diverse physical?chemical properties, in Spanish soils with different farmland uses. The studied compounds were extracted from soil by ultrasound-assisted extraction (UAE) and determined, after derivatization, by gas chromatography with mass spectrometric detection (GC?MS). The limits of detection (LODs) ranged from 0.14 ng g?1 (naproxen) to 0.65 ng g?1 (amitriptyline). At least two compounds where detected in all samples, being ibuprofen, salicylic acid, and paracetamol, the most frequently detected compounds. The highest levels found in soil were 47 ng g?1 for allopurinol and 37 ng g?1 for salicylic acid. The influence of the type of crop and the sampling area on the levels of pharmaceuticals in soil, as well as their relationship with soil physical?chemical properties, was studied. The frequent and widespread detection of some of these compounds in agricultural soils show a diffuse contamination, although the low levels found do not pose a risk to the environment or the human health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose The demand of rice by the increase in population in many countries has intensified the application of pesticides and the use of poor quality water to irrigate fields. The terrestrial environment is one compartment affected by these situations, where soil is working as a reservoir, retaining organic pollutants. Therefore, it is necessary to develop methods to determine insecticides in soil and monitor susceptible areas to be contaminated, applying adequate techniques to remediate them. Materials and methods This study investigates the occurrence of ten pyrethroid insecticides (PYs) and its spatio-temporal variance in soil at two different depths collected in two periods (before plow and during rice production), in a paddy field area located in the Mediterranean coast. Pyrethroids were quantified using gas chromatography?mass spectrometry (GC?MS) after ultrasound-assisted extraction with ethyl acetate. The results obtained were assessed statistically using non-parametric methods, and significant statistical differences (p < 0.05) in pyrethroids content with soil depth and proximity to wastewater treatment plants were evaluated. Moreover, a geographic information system (GIS) was used to monitor the occurrence of PYs in paddy fields and detect risk areas. Results and discussion Pyrethroids were detected at concentrations ?57.0 ng g?1 before plow and ?62.3 ng g?1 during rice production, being resmethrin and cyfluthrin the compounds found at higher concentrations in soil. Pyrethroids were detected mainly at the top soil, and a GIS program was used to depict the obtained results, showing that effluents from wastewater treatment plants (WWTPs) were the main sources of soil contamination. No toxic effects were expected to soil organisms, but it is of concern that PYs may affect aquatic organisms, which represents the worst case scenario. Conclusions A methodology to determine pyrethroids in soil was developed to monitor a paddy field area. The use of water fromWWTPs to irrigate rice fields is one of the main pollution sources of pyrethroids. It is a matter of concern that PYs may present toxic effects on aquatic organisms, as they can be desorbed from soil. Phytoremediation may play an important role in this area, reducing the possible risk associated to PYs levels in soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What are the limits and modulators of neural precision? We address this question in the most regular biological oscillator known, the electric organ command nucleus in the brainstem of wave-type gymnotiform fish. These fish produce an oscillating electric field, the electric organ discharge (EOD), used in electrolocation and communication. We show here that the EOD precision, measured by the coefficient of variation (CV = SD/mean period) is as low as 2 × 10−4 in five species representing three families that range widely in species and individual mean EOD frequencies (70–1,250 Hz). Intracellular recording in the pacemaker nucleus (Pn), which commands the EOD cycle by cycle, revealed that individual Pn neurons of the same species also display an extremely low CV (CV = 6 × 10−4, 0.8 μs SD). Although the EOD CV can remain at its minimum for hours, it varies with novel environmental conditions, during communication, and spontaneously. Spontaneous changes occur as abrupt steps (250 ms), oscillations (3–5 Hz), or slow ramps (10–30 s). Several findings suggest that these changes are under active control and depend on behavioral state: mean EOD frequency and CV can change independently; CV often decreases in response to behavioral stimuli; and lesions of one of the two inputs to the Pn had more influence on CV than lesions of the other input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular and biochemical mechanisms that modulate the production of eumelanin or pheomelanin pigments involve the opposing effects of two intercellular signaling molecules, α-melanocyte stimulating hormone (MSH) and agouti signal protein (ASP). ASP is an antagonist of MSH signaling through the melanocyte-specific MSH receptor, although its mechanism(s) of action is controversial. We previously have reported significant down-regulation of all known melanogenic genes during the eumelanin to pheomelanin switch in murine hair follicle melanocytes and in cultured melanocytes treated with recombinant ASP. To identify factors that might be involved in the switch to pheomelanogenesis, we screened ASP-treated melanocytes by using differential display and identified three up-regulated genes: a DNA replication control protein, a basic helix–loop–helix transcription factor, and a novel gene. We have simultaneously identified six down-regulated genes in ASP-treated melanocytes; two of those encode tyrosinase and TRP2, melanogenic genes known to be down-regulated during pheomelanogenesis, which provide good internal controls for this approach. These results suggest that there are complex mechanisms involved in the switch to pheomelanin production, and that these modulated genes might be involved in the pleiotropic changes seen in yellow mice, including the change in coat color.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experiments using electrical and N-methyl-d-aspartate microstimulation of the spinal cord gray matter and cutaneous stimulation of the hindlimb of spinalized frogs have provided evidence for a modular organization of the frog’s spinal cord circuitry. A “module” is a functional unit in the spinal cord circuitry that generates a specific motor output by imposing a specific pattern of muscle activation. The output of a module can be characterized as a force field: the collection of the isometric forces generated at the ankle over different locations in the leg’s workspace. Different modules can be combined independently so that their force fields linearly sum. The goal of this study was to ascertain whether the force fields generated by the activation of supraspinal structures could result from combinations of a small number of modules. We recorded a set of force fields generated by the electrical stimulation of the vestibular nerve in seven frogs, and we performed a principal component analysis to study the dimensionality of this set. We found that 94% of the total variation of the data is explained by the first five principal components, a result that indicates that the dimensionality of the set of fields evoked by vestibular stimulation is low. This result is compatible with the hypothesis that vestibular fields are generated by combinations of a small number of spinal modules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theories of sequence learning based on temporally asymmetric, Hebbian long-term potentiation predict that during route learning the spatial firing distributions of hippocampal neurons should enlarge in a direction opposite to the animal’s movement. On a route AB, increased synaptic drive from cells representing A would cause cells representing B to fire earlier and more robustly. These effects appeared within a few laps in rats running on closed tracks. This provides indirect evidence for Hebbian synaptic plasticity and a functional explanation for why place cells become directionally selective during route following, namely, to preserve the synaptic asymmetry necessary to encode the sequence direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The threshold behavior of the transport properties of a random metal in the critical region near a metal–insulator transition is strongly affected by the measuring electromagnetic fields. In spite of the randomness, the electrical conductivity exhibits striking phase-coherent effects due to broken symmetry, which greatly sharpen the transition compared with the predictions of effective medium theories, as previously explained for electrical conductivities. Here broken symmetry explains the sign reversal of the T → 0 magnetoconductance of the metal–insulator transition in Si(B,P), also previously not understood by effective medium theories. Finally, the symmetry-breaking features of quantum percolation theory explain the unexpectedly very small electrical conductivity temperature exponent α = 0.22(2) recently observed in Ni(S,Se)2 alloys at the antiferromagnetic metal–insulator transition below T = 0.8 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early cleavages of Xenopus embryos were oriented in strong, static magnetic fields. Third-cleavage planes, normally horizontal, were seen to orient to a vertical plane parallel with a vertical magnetic field. Second cleavages, normally vertical, could also be oriented by applying a horizontal magnetic field. We argue that these changes in cleavage-furrow geometries result from changes in the orientation of the mitotic apparatus. We hypothesize that the magnetic field acts directly on the microtubules of the mitotic apparatus. Considerations of the length of the astral microtubules, their diamagnetic anisotropy, and flexural rigidity predict the required field strength for an effect that agrees with the data. This observation provides a clear example of a static magnetic-field effect on a fundamental cellular process, cell division.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many prefrontal (PF) neurons convey information about both an object’s identity (what) and its location (where). To explore how they represent conjunctions of what and where, we explored the receptive fields of their mnemonic activity (i.e., their “memory fields”) by requiring monkeys to remember both an object and its location at many positions throughout a wide portion of central vision. Many PF neurons conveyed object information and had highly localized memory fields that emphasized the contralateral, but not necessarily foveal, visual field. These results indicate that PF neurons can simultaneously convey precise location and object information and thus may play a role in constructing a unified representation of a visual scene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immunosuppressant rapamycin inhibits Tor1p and Tor2p (target of rapamycin proteins), ultimately resulting in cellular responses characteristic of nutrient deprivation through a mechanism involving translational arrest. We measured the immediate transcriptional response of yeast grown in rich media and treated with rapamycin to investigate the direct effects of Tor proteins on nutrient-sensitive signaling pathways. The results suggest that Tor proteins directly modulate the glucose activation and nitrogen discrimination pathways and the pathways that respond to the diauxic shift (including glycolysis and the citric acid cycle). Tor proteins do not directly modulate the general amino acid control, nitrogen starvation, or sporulation (in diploid cells) pathways. Poor nitrogen quality activates the nitrogen discrimination pathway, which is controlled by the complex of the transcriptional repressor Ure2p and activator Gln3p. Inhibiting Tor proteins with rapamycin increases the electrophoretic mobility of Ure2p. The work presented here illustrates the coordinated use of genome-based and biochemical approaches to delineate a cellular pathway modulated by the protein target of a small molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast transverse relaxation of 1H, 15N, and 13C by dipole-dipole coupling (DD) and chemical shift anisotropy (CSA) modulated by rotational molecular motions has a dominant impact on the size limit for biomacromolecular structures that can be studied by NMR spectroscopy in solution. Transverse relaxation-optimized spectroscopy (TROSY) is an approach for suppression of transverse relaxation in multidimensional NMR experiments, which is based on constructive use of interference between DD coupling and CSA. For example, a TROSY-type two-dimensional 1H,15N-correlation experiment with a uniformly 15N-labeled protein in a DNA complex of molecular mass 17 kDa at a 1H frequency of 750 MHz showed that 15N relaxation during 15N chemical shift evolution and 1HN relaxation during signal acquisition both are significantly reduced by mutual compensation of the DD and CSA interactions. The reduction of the linewidths when compared with a conventional two-dimensional 1H,15N-correlation experiment was 60% and 40%, respectively, and the residual linewidths were 5 Hz for 15N and 15 Hz for 1HN at 4°C. Because the ratio of the DD and CSA relaxation rates is nearly independent of the molecular size, a similar percentagewise reduction of the overall transverse relaxation rates is expected for larger proteins. For a 15N-labeled protein of 150 kDa at 750 MHz and 20°C one predicts residual linewidths of 10 Hz for 15N and 45 Hz for 1HN, and for the corresponding uniformly 15N,2H-labeled protein the residual linewidths are predicted to be smaller than 5 Hz and 15 Hz, respectively. The TROSY principle should benefit a variety of multidimensional solution NMR experiments, especially with future use of yet somewhat higher polarizing magnetic fields than are presently available, and thus largely eliminate one of the key factors that limit work with larger molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intermediate filament protein vimentin is a major phosphoprotein in mammalian fibroblasts, and reversible phosphorylation plays a key role in its dynamic rearrangement. Selective inhibition of type 2A but not type 1 protein phosphatases led to hyperphosphorylation and concomitant disassembly of vimentin, characterized by a collapse into bundles around the nucleus. We have analyzed the potential role of one of the major protein phosphatase 2A (PP2A) regulatory subunits, B55, in vimentin dephosphorylation. In mammalian fibroblasts, B55 protein was distributed ubiquitously throughout the cytoplasm with a fraction associated to vimentin. Specific depletion of B55 in living cells by antisense B55 RNA was accompanied by disassembly and increased phosphorylation of vimentin, as when type 2A phosphatases were inhibited using okadaic acid. The presence of B55 was a prerequisite for PP2A to efficiently dephosphorylate vimentin in vitro or to induce filament reassembly in situ. Both biochemical fractionation and immunofluorescence analysis of detergent-extracted cells revealed that fractions of PP2Ac, PR65, and B55 were tightly associated with vimentin. Furthermore, vimentin-associated PP2A catalytic subunit was displaced in B55-depleted cells. Taken together these data show that, in mammalian fibroblasts, the intermediate filament protein vimentin is dephosphorylated by PP2A, an event targeted by B55.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical and experimental evidence suggests that spreading of malignant cells from a localized tumor (metastasis) is directly related to the number of microvessels in the primary tumor. This tumor angiogenesis is thought to be mediated by tumor-cell-derived growth factors. However, most tumor cells express a multitude of candidate angiogenesis factors and it is difficult to decipher which of these are rate-limiting factors in vivo. Herein we use ribozyme targeting of pleiotrophin (PTN) in metastatic human melanoma cells to assess the significance of this secreted growth factor for angiogenesis and metastasis. As a model we used human melanoma cells (1205LU) that express high levels of PTN and metastasize from subcutaneous tumors to the lungs of experimental animals. In these melanoma cells, we reduced PTN mRNA and growth factor activity by transfection with PTN-targeted ribozymes and generated cell lines expressing different levels of PTN. We found that the reduction of PTN does not affect growth of the melanoma cells in vitro. In nude mice, however, tumor growth and angiogenesis were decreased in parallel with the reduced PTN levels and apoptosis in the tumors was increased. Concomitantly, the metastatic spread of the tumors from the subcutaneous site to the lungs was prevented. These studies support a direct link between tumor angiogenesis and metastasis through a secreted growth factor and identify PTN as a candidate factor that may be rate-limiting for human melanoma metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We combine infinite dimensional analysis (in particular a priori estimates and twist positivity) with classical geometric structures, supersymmetry, and noncommutative geometry. We establish the existence of a family of examples of two-dimensional, twist quantum fields. We evaluate the elliptic genus in these examples. We demonstrate a hidden SL(2,ℤ) symmetry of the elliptic genus, as suggested by Witten.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell adhesion molecules (CAMs) mediate cell attachment and stress transfer through extracellular domains. Here we forcibly unfold the Ig domains of a prototypical Ig superfamily CAM that contains intradomain disulfide bonds. The Ig domains of all such CAMs have conformations homologous to cadherin extracellular domains, titin Ig-type domains, and fibronectin type-III (FNIII) domains. Atomic force microscopy has been used to extend the five Ig domains of Mel-CAM (melanoma CAM)—a protein that is overexpressed in metastatic melanomas—under conditions where the disulfide bonds were either left intact or disrupted through reduction. Under physiological conditions where intradomain disulfide bonds are intact, partial unfolding was observed at forces far smaller than those reported previously for either titin's Ig-type domains or tenascin's FNIII domains. This partial unfolding under low force may be an important mechanism for imparting elasticity to cell–cell contacts, as well as a regulatory mechanism for adhesive interactions. Under reducing conditions, Mel-CAM's Ig domains were found to fully unfold through a partially folded state and at slightly higher forces. The results suggest that, in divergent evolution of all such domains, stabilization imparted by disulfide bonds relaxes requirements for strong, noncovalent, folded-state interactions.