926 resultados para Modular neural systems
Resumo:
A number of theoretical and experimental investigations have been made into the nature of purlin-sheeting systems over the past 30 years. These systems commonly consist of cold-formed zed or channel section purlins, connected to corrugated sheeting. They have proven difficult to model due to the complexity of both the purlin deformation and the restraint provided to the purlin by the sheeting. Part 1 of this paper presented a non-linear elasto plastic finite element model which, by incorporating both the purlin and the sheeting in the analysis, allowed the interaction between the two components of the system to be modelled. This paper presents a simplified version of the first model which has considerably decreased requirements in terms of computer memory, running time and data preparation. The Simplified Model includes only the purlin but allows for the sheeting's shear and rotational restraints by modelling these effects as springs located at the purlin-sheeting connections. Two accompanying programs determine the stiffness of these springs numerically. As in the Full Model, the Simplified Model is able to account for the cross-sectional distortion of the purlin, the shear and rotational restraining effects of the sheeting, and failure of the purlin by local buckling or yielding. The model requires no experimental or empirical input and its validity is shown by its goon con elation with experimental results. (C) 1997 Elsevier Science Ltd.
Resumo:
The spatial and temporal association of muscle-specific tropomyosin gene expression, and myofibril assembly and degradation during metamorphosis is analyzed in the gastropod mollusc. Haliotis rufescens. Metamorphosis of tile planktonic larva to the benthic juvenile includes rearrangement and atrophy of specific larval muscles, and biogenesis of the new juvenile muscle system. The major muscle of the larva - the larval retractor muscle - reorganizes at metamorphosis, with two suites of cells having different fates. The ventral cells degenerate, while the dorsal cells become part of the developing juvenile mantle musculature. Prior to these changes in myofibrillar structure, tropomyosin mRNA prevalence declines until undetectable in the ventral cells, while increasing markedly in the dorsal cells. In the foot muscle and right shell muscle, tropomyosin mRNA levels remain relatively stable, even trough myofibril content increases. In a population of median mesoderm cells destined to form de novo the major muscle of the juvenile and adult (the columellar muscle), tropomyosin expression is initiated at 45 h after induction of metamorphosis. Myofibrillar filamentous actin is not detected in these cells until about 7 days later. Given that patterns of tropomyosin mRNA accumulation in relation to myofibril assembly and disassembly differ significantly among the four major muscle systems examined, we suggest that different regulatory mechanisms, probably operating at both transcriptional and post-transcriptional levels, control the biogenesis and atrophy of different larval and postlarval muscles at metamorphosis.
Resumo:
A recent result of Bryant and Lindner shows that the quasigroups arising from 2-perfect m-cycle systems form a variety only when m = 3, 5 and 7. Here we investigate the situation in the case where the distance two cycles are required to be in the original system.
Resumo:
When linear equality constraints are invariant through time they can be incorporated into estimation by restricted least squares. If, however, the constraints are time-varying, this standard methodology cannot be applied. In this paper we show how to incorporate linear time-varying constraints into the estimation of econometric models. The method involves the augmentation of the observation equation of a state-space model prior to estimation by the Kalman filter. Numerical optimisation routines are used for the estimation. A simple example drawn from demand analysis is used to illustrate the method and its application.
Resumo:
We report on the experimental observation of both basic frequency locking synchronization and chaos synchronization between two mutually coupled chaotic subsystems. We show that these two kinds of synchronization are two stages of interaction between coupled chaotic systems. in particular the chaos synchronization could be understood as a state of phase locking between coupled chaotic oscillations.
Resumo:
In this paper we completely settle the embedding problem for m-cycle systems with m less than or equal to 14. We also solve the more general problem of finding m-cycle systems of K-v - K-u when m is an element of {4,6,7,8,10,12,14}.
Resumo:
Previous functional magnetic resonance imaging (fMRI) studies examined neural activity responses to emotive stimuli in healthy individuals after acute/subacute administration of antidepressants. We now report the effects of repeated use of the antidepressant clomipramine on fMRI data acquired during presentation of emotion-provoking and neutral stimuli on healthy volunteers. A total of 12 volunteers were evaluated with fMRI after receiving low doses of clomipramine for 4 weeks and again after 4 weeks of washout. Fear-, happiness-, anger-provoking and neutral pictures from the International Affective Picture System (IAPS) were used. Data analysis was performed with statistical parametric mapping (P < 0.05). Paired t-test comparisons for each condition between medicated and unmedicated states showed, to negative valence paradigms, decrease in brain activity in the amygdala when participants were medicated. We also demonstrated, across both positive and negative valence paradigms, consistent decreases in brain activity in the medicated state in the anterior cingulate gyrus and insula. This is the first report of modulatory effects of repeated antidepressant use on the central representation of somatic states in response to emotions of both negative and positive valences in healthy individuals. Also, our results corroborate findings of antidepressant-induced temporolimbic activity changes to emotion-provoking stimuli obtained in studies of subjects treated acutely with such agents.
Resumo:
Neural phase signaling has gained attention as a putative coding mechanism through which the brain binds the activity of neurons across distributed brain areas to generate thoughts, percepts, and behaviors. Neural phase signaling has been shown to play a role in various cognitive processes, and it has been suggested that altered phase signaling may play a role in mediating the cognitive deficits observed across neuropsychiatric illness. Here, we investigated neural phase signaling in two mouse models of cognitive dysfunction: mice with genetically induced hyperdopaminergia [dopamine transporter knock-out (DAT-KO) mice] and mice with genetically induced NMDA receptor hypofunction [NMDA receptor subunit-1 knockdown (NR1-KD) mice]. Cognitive function in these mice was assessed using a radial-arm maze task, and local field potentials were recorded from dorsal hippocampus and prefrontal cortex as DAT-KO mice, NR1-KD mice, and their littermate controls engaged in behavioral exploration. Our results demonstrate that both DAT-KO and NR1-KD mice display deficits in spatial cognitive performance. Moreover, we show that persistent hyperdopaminergia alters interstructural phase signaling, whereas NMDA receptor hypofunction alters interstructural and intrastructural phase signaling. These results demonstrate that dopamine and NMDA receptor dependent glutamate signaling play a critical role in coordinating neural phase signaling, and encourage further studies to investigate the role that deficits in phase signaling play in mediating cognitive dysfunction.
Resumo:
For all m greater than or equal to 3 the edges of complete graph on 2m + 1 vertices can he partitioned into m 2m-cycles and an m-cycle.
Resumo:
Systems approaches can help to evaluate and improve the agronomic and economic viability of nitrogen application in the frequently water-limited environments. This requires a sound understanding of crop physiological processes and well tested simulation models. Thus, this experiment on spring wheat aimed to better quantify water x nitrogen effects on wheat by deriving some key crop physiological parameters that have proven useful in simulating crop growth. For spring wheat grown in Northern Australia under four levels of nitrogen (0 to 360 kg N ha(-1)) and either entirely on stored soil moisture or under full irrigation, kernel yields ranged from 343 to 719 g m(-2). Yield increases were strongly associated with increases in kernel number (9150-19950 kernels m(-2)), indicating the sensitivity of this parameter to water and N availability. Total water extraction under a rain shelter was 240 mm with a maximum extraction depth of 1.5 m. A substantial amount of mineral nitrogen available deep in the profile (below 0.9 m) was taken up by the crop. This was the source of nitrogen uptake observed after anthesis. Under dry conditions this late uptake accounted for approximately 50% of total nitrogen uptake and resulted in high (>2%) kernel nitrogen percentages even when no nitrogen was applied,Anthesis LAI values under sub-optimal water supply were reduced by 63% and under sub-optimal nitrogen supply by 50%. Radiation use efficiency (RUE) based on total incident short-wave radiation was 1.34 g MJ(-1) and did not differ among treatments. The conservative nature of RUE was the result of the crop reducing leaf area rather than leaf nitrogen content (which would have affected photosynthetic activity) under these moderate levels of nitrogen limitation. The transpiration efficiency coefficient was also conservative and averaged 4.7 Pa in the dry treatments. Kernel nitrogen percentage varied from 2.08 to 2.42%. The study provides a data set and a basis to consider ways to improve simulation capabilities of water and nitrogen effects on spring wheat. (C) 1997 Elsevier Science B.V.
Resumo:
This study aimed to evaluate the neural response in double-array cochlear implant as well as to describe the refractory recovery and the spread of excitation functions. In a prospective study 11 patients were implanted with the double-array cochlear implant. Neural response telemetry (NRT) was performed intra-operatively. NRT threshold could be registered in 6 of the 11 patients, at least in one electrode. The remaining five patients did not show measurable neural response intra-operatively. It was noted that although recovery and spread of excitation functions could be recorded in all the tested electrodes with measurable neural responses, the responses were shown to be different from the usual register in patients with other etiologies.
Resumo:
Conclusion. The study shows that there are differences in the measurement of the action potentials with and without the stylet in the Nucleus Freedom Contour Advance that are higher in the apex than in the base of the cochlea. Objectives. To determine if there are differences in the intraoperative impedances and in the neural response telemetry threshold values in the Nucleus Freedom Contour Advance before and after stylet removal. Subjects and methods. This was a prospective clinical study. Intraoperative impedances and neural response telemetry in users of the Freedom Contour Advance Cochlear Implant were measured before and after stylet removal. Results. There was a significant reduction in the impedance values of an average 1.5 k Omega +/- 2.3 in common ground mode and 1.3 k Omega +/- 2.3 for all monopolar modes after the stylet removal (p < 0.001). When analyzing the apical, medium, and basal electrodes, there was a statistically significant reduction in the neural response thresholds after stylet removal only in the apical electrodes (p = 0.001).