972 resultados para Modified reflected normal loss function
Resumo:
Kuparipinnan hapettuminen on viimevuosina ollut suosittu tutkimuskohde materiaalitieteissä kuparin laajan teollisuuskäytön vuoksi. Teollisuussovellusten, kuten suojaavien pintaoksidien kehittäminen vaatii kuitenkin syvällistä tuntemusta hapettumisprosessista ja toisaalta myös normaaliolosuhteissa materiaalissa esiintyvien hilavirheiden vaikutuksesta siihen. Tässä työssä keskitytäänkin tutkimaan juuri niitä mekanismeja, joilla erilaiset pintavirheet ja porrastettu pintarakenne vaikuttavathapen adsorptioprosessiin kuparipinnalla. Tutkimus on tehty käyttämällä laskennallisia menetelmiä sekä VASP- ja SIESTA-ohjelmistoja. Työssätutkittiin kemiallisia ja rakenteellisia virheitä Cu(100)-pinnalla, joka on reaktiivisin matalanMillerin indeksin pinta ja porrastetun pinnan tutkimuksessa käytettiin Cu(211)-pintaa, joka puolestaan on yksinkertainen, stabiili ja aiemmissa tutkimuksissa usein käytetty pintarakenne. Työssä tutkitut hilavirheet, adatomit, vähentävät molekyylin dissosiaatiota kuparipinnalla, kun taas vakanssit toimivat dissosiaation keskuksina. Kemiallisena epäpuhtautena käytetty hopeakerros ei estä kuparin hapettumista, sillä happi aiheuttaa mielenkiintoisen segregaatioilmiön, jossa hopeatyöntyy syvemmälle pinnassa jättäen kuparipinnan suojaamattomaksi. Porrastetulla pinnalla (100)-hollow on todennäköisin paikka molekyylin dissosiaatiolle, kun taas portaan bridge-paikka on suotuisin molekulaariselle adsorptiolle. Lisäksi kuparin steppipinnan todettiin olevan reaktiivisempi kuin tasaiset kuparipinnat.
Resumo:
BACKGROUND: The central function of dendritic cells (DC) in inducing and preventing immune responses makes them ideal therapeutic targets for the induction of immunologic tolerance. In a rat in vivo model, we showed that dexamethasone-treated DC (Dex-DC) induced indirect pathway-mediated regulation and that CD4+CD25+ T cells were involved in the observed effects. The aim of the present study was to investigate the mechanisms underlying the acquired immunoregulatory properties of Dex-DC in the rat and human experimental systems. METHODS: After treatment with dexamethasone (Dex), the immunogenicity of Dex-DC was analyzed in T-cell proliferation and two-step hyporesponsiveness induction assays. After carboxyfluorescein diacetate succinimidyl ester labeling, CD4+CD25+ regulatory T-cell expansion was analyzed by flow cytometry, and cytokine secretion was measured by ELISA. RESULTS: In this study, we demonstrate in vitro that rat Dex-DC induced selective expansion of CD4+CD25+ regulatory T cells, which were responsible for alloantigen-specific hyporesponsiveness. The induction of regulatory T-cell division by rat Dex-DC was due to secretion of interleukin (IL)-2 by DC. Similarly, in human studies, monocyte-derived Dex-DC were also poorly immunogenic, were able to induce T-cell anergy in vitro, and expand a population of T cells with regulatory functions. This was accompanied by a change in the cytokine profile in DC and T cells in favor of IL-10. CONCLUSION: These data suggest that Dex-DC induced tolerance by different mechanisms in the two systems studied. Both rat and human Dex-DC were able to induce and expand regulatory T cells, which occurred in an IL-2 dependent manner in the rat system.
Resumo:
Résumé: Pratiquement tous les cancers du colon contiennent des mutations dans la voie de signalisation de Wnt qui active constitutivement cette voie. Cette activation mène à la stabilisation de la β-catenine. La β-catenin est transportée dans le noyau ou elle active des gènes cible en interagissant avec le facteur de transcription de TCF/LEF. Des adénovirus qui peuvent sélectivement se répliquer dans les cellules tumorales sont les agents qui peuvent permettre la déstruction de la tumeur mais pas le tissu normal. In vitro, les adénovirus avec des sites d'attachement du facteur de transcription TCF dans les promoteurs de l'adénovirus montrent une sélectivité et une activité dans une large sélection de lignées cellulaires de cancer du colon. Au contraire, in vivo, quand les adénovirus modifiés sont injectés dans la circulation, ils sont moins efficaces à cause de leur fixation par le foie et à cause de l'absence d'expression du récepteur du Coxsackie-Adénovirus (CAR). Le but de ma thèse était de modifier la protéine principale de capside de l'adénovirus, fibre, pour augmenter l'infection des tumeurs du cancer du colon. La fibre de l'adénovirus est responsable de l'attachement aux cellules et de l'entrée virale. J'ai inséré un peptide RGD dans la boucle HI de la fibre qui dirige sélectivement le virus aux récepteurs des integrines. Les integrines sont surexprimées par les cellules du cancer du colon et l'endothélium des vesseaux de la tumeur. Le virus re-ciblé, vKH6, a montré une activité accrue dans toutes les lignées cellulaires de cancer du colon, tandis que la sélectivité était maintenue. In vivo, vKH6 était supérieur au virus avec une capside de type sauvage en retardant la croissance de la tumeur. Le virus s'est répliqué plus vite et dispersé graduellement dans la tumeur. Cet effet a été montré par hybridation in situ et par PCR quantitative. Cependant, la monothérapie avec le virus n'a pu retarder la croissance des cellules tumorales SW620 greffées que de 2 semaines, mais à cause des régions non infectées la tumeur n'a pas pu être éliminée. Bien que la combinaison avec les chimiothérapies conventionnelles soit d'intérêt potentiel, presque toutes interfèrent avec la réplication virale. Les drogues antiangiogéniques sont des agents anti-tumoraux efficaces et prometteurs. Ces drogues n'interfèrent pas avec le cycle de vie de l'adénovirus. RAD001 est un dérivé de la rapamycine et il inhibe mTOR, une protéine kinase de la voie de PI3K. RAD001 empêche la croissance des cellules et il a aussi des effets anti-angiogénique et immunosuppressifs. RAD001 in vitro n'affecte pas l'expression des gènes viraux et la production virale. La combinaison de VKH6 et RAD001 in vivo a un effet additif en retardant la croissance de la tumeur. Des nouveaux peptides plus efficaces dans le ciblage de l'adénovirus sont nécessaires pour augmenter l'infection des tumeurs. J'ai créé un système de recombinaison qui permettra la sélection de nouveaux peptides dans le contexte du génome de l'adénovirus. Summary Virtually all colon cancers have mutations in the Wnt signalling pathway which result in the constitutive activation of the pathway. This activation leads to stabilization of β-catenin. β-catenin enters the nucleus and activates its target genes through interaction with the TCF transcription factor. Selectively replicating adenoviruses are promising novel agents that can destroy the tumour but not the surrounding normal tissue. In vitro, adenoviruses with TCF binding sites in the early viral promoters show selectivity and activity in a broad panel of viruses but in vivo they are less effective due to the lack of expression of the Coxsackie-Adenovirus receptor (CAR). The aim of my thesis was to modify the major capsid protein of the adenovirus, fibre, to increase the infection of colon tumours. Fibre of adenovirus is responsible for the binding to cells and for the viral uptake. I inserted an RGD binding peptide into the HI loop of fibre that selectively targets the virus to integrins that are overexpressed on tumour cells and on tumour endothelium. The retargeted virus, vKH6, showed increased activity in all colon cancer cell lines while selectivity was maintained. In vivo, vKH6 is superior to a matched virus with a wild type capsid in delaying tumour growth. vKH6 replicates and gradually spreads within the tumour as shown by in situ hybridization and Q-PCR. The virus alone can delay the growth of SW620 xenografts by 2 weeks but due to uninfected tumour regions the tumour cannot be cured. Although combination with conventional chemotherapeutics is of potential interest, almost all of them interfere with the viral replication. Growing evidence supports that anti-angiogenic drugs are effective and promising anti-tumour agents. These drugs interfere less with the viral life cycle. RAD001 is a rapamycin derivative and it blocks mTOR, a protein kinase in the PI3K pathway. RAD001 inhibits cell growth and has strong anti-angiogenic and immunosuppressive effects. RAD001 in vitro does not affect viral gene expression and viral burst size. In vivo vKH6 and RAD001 have an additive effect in delaying tumour growth, but tumour growth is still not completely inhibited. To further increase tumour infection new tumour specific targeting peptides are needed. I created an adenovirus display library that will allow the selection of targeting peptides. This system may also facilitate the production of fibre modified viruses.
Resumo:
Lipin proteins (lipin 1, 2, and 3) regulate glycerolipid homeostasis by acting as phosphatidic acid phosphohydrolase (PAP) enzymes in the TG synthesis pathway and by regulating DNA-bound transcription factors to control gene transcription. Hepatic PAP activity could contribute to hepatic fat accumulation in response to physiological and pathophysiological stimuli. To examine the role of lipin 1 in regulating hepatic lipid metabolism, we generated mice that are deficient in lipin-1-encoded PAP activity in a liver-specific manner (Alb-Lpin1(-/-) mice). This allele of lipin 1 was still able to transcriptionally regulate the expression of its target genes encoding fatty acid oxidation enzymes, and the expression of these genes was not affected in Alb-Lpin1(-/-) mouse liver. Hepatic PAP activity was significantly reduced in mice with liver-specific lipin 1 deficiency. However, hepatocytes from Alb-Lpin1(-/-) mice had normal rates of TG synthesis, and steady-state hepatic TG levels were unaffected under fed and fasted conditions. Furthermore, Alb-Lpin1(-/-) mice were not protected from intrahepatic accumulation of diacylglyerol and TG after chronic feeding of a diet rich in fat and fructose. Collectively, these data demonstrate that marked deficits in hepatic PAP activity do not impair TG synthesis and accumulation under acute or chronic conditions of lipid overload.
Resumo:
MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences.
Resumo:
Proper dialogue between presynaptic neurons and their targets is essential for correct synaptic assembly and function. At central synapses, Wnt proteins function as retrograde signals to regulate axon remodeling and the accumulation of presynaptic proteins. Loss of Wnt7a function leads to defects in the localization of presynaptic markers and in the morphology of the presynaptic axons. We show that loss of function of Dishevelled-1 (Dvl1) mimics and enhances the Wnt7a phenotype in the cerebellum. Although active zones appear normal, electrophysiological recordings in cerebellar slices from Wnt7a/Dvl1 double mutant mice reveal a defect in neurotransmitter release at mossy fi ber–granule cell synapses. Deficiency in Dvl1 decreases, whereas exposure to Wnt increases, synaptic vesicle recycling in mossy fi bers. Dvl increases the number of Bassoon clusters, and like other components of the Wnt pathway, it localizes to synaptic sites. These fi ndings demonstrate that Wnts signal across the synapse on Dvl-expressing presynaptic terminals to regulate synaptic assembly and suggest a potential novel function for Wnts in neurotransmitter release.
Resumo:
'Douradão' peach is a perishable product and when cold stored is subject to chilling injury. The objective of the experiment was to evaluate the effect of modified atmosphere packaging (MAP) and cold storage on quality and storage life of these peaches. Fruits were packed in polypropylene (PP) trays and placed inside low density polyethylene (LDPE) bags (30, 50, 60, 75 μm thickness) with active modified atmosphere (10 kPa CO2 + 1.5kPa O2, balance N2). The control was made with peaches held in nonwrapped PP trays. Fruits were kept at 1 ± 1 °C and 90 ± 5% relative humidity (RH) for 28 days and CO2 and O2 within packages was monitored every two days. After 14, 21 and 28 days, samples were withdrawn from MAP and kept in air at 25 ± 1 °C and 90 ± 5% RH for ripening. On the day of removal from the cold storage and after 4 days, peaches were evaluated for weight loss, decay incidence, flesh firmness, woolliness incidence, soluble solids content (SSC), titratable acidity (TA) and juice content. The results showed that MAP had influence on reducing weight loss and prevented postharvest decay. MAP of 1-2 kPa O2 and 3-6 kPa CO2 at 1 °C (from 50 and 60 μm LDPE films) were effective for keeping good quality of 'Douradão' peaches during 28 days of storage, the ripe fruits showed reduced incidence of woolliness, adequate juiciness and flesh firmness. Packages of 30 and 75 μm LDPE films were ineffective for reducing woolliness during cold storage. MAP fruits showed lower SSC and no relevant effect on TA. Control fruits did not present marketable conditions after 14 days of cold storage.
Resumo:
Dynamic adaptations of one"s behavior by means of performance monitoring are a central function of the human executive system, that underlies considerable interindividual variation. Converging evidence from electrophysiological and neuroimaging studies in both animals and humans hints atthe importance ofthe dopaminergic system forthe regulation of performance monitoring. Here, we studied the impact of two polymorphisms affecting dopaminergic functioning in the prefrontal cortex [catechol-O-methyltransferase (COMT) Val108/158Met and dopamine D4 receptor (DRD4) single-nucleotide polymorphism (SNP)-521] on neurophysiological correlates of performance monitoring. We applied a modified version of a standard flanker task with an embedded stop-signal task to tap into the different functions involved, particularly error monitoring, conflict detection and inhibitory processes. Participants homozygous for the DRD4 T allele produced an increased error-related negativity after both choice errors and failed inhibitions compared with C-homozygotes. This was associated with pronounced compensatory behavior reflected in higher post-error slowing. No group differences were seen in the incompatibility N2, suggesting distinct effects of the DRD4 polymorphism on error monitoring processes. Additionally, participants homozygous for the COMTVal allele, with a thereby diminished prefrontal dopaminergic level, revealed increased prefrontal processing related to inhibitory functions, reflected in the enhanced stop-signal-related components N2 and P3a. The results extend previous findings from mainly behavioral and neuroimaging data on the relationship between dopaminergic genes and executive functions and present possible underlying mechanisms for the previously suggested association between these dopaminergic polymorphisms and psychiatric disorders as schizophrenia or attention deficit hyperactivity disorder.
Resumo:
NlmCategory="UNASSIGNED">Sleep and sleep disorders are complex and highly variable phenotypes regulated by many genes and environment. The catechol-O-methyltransferase (COMT) gene is an interesting candidate, being one of the major mammalian enzymes involved in the catabolism of catecholamines. The activity of COMT enzyme is genetically polymorphic due to a guanine-to-adenine transition at codon 158, resulting in a valine (Val) to methionine (Met) substitution. Individuals homozygous for the Val allele show higher COMT activity, and lower dopaminergic signaling in prefrontal cortex (PFC) than subjects homozygous for the Met allele. Since COMT has a crucial role in metabolising dopamine, it was suggested that the common functional polymorphism in the COMT gene impacts on cognitive function related to PFC, sleep-wake regulation, and potentially on sleep pathologies. The COMT Val158Met polymorphism may predict inter-individual differences in brain electroencephalography (EEG) alpha oscillations and recovery processes resulting from partial sleep loss in healthy individuals. The Val158Met polymorphism also exerts a sexual dimorphism and has a strong effect on objective daytime sleepiness in patients with narcolepsy-cataplexy. Since the COMT enzyme inactivates catecholamines, it was hypothesized that the response to stimulant drugs differs between COMT genotypes. Modafinil maintained executive functioning performance and vigilant attention throughout sleep deprivation in subjects with Val/Val genotype, but less in those with Met/Met genotype. Also, homozygous Met/Met patients with narcolepsy responded to lower doses of modafinil compared to Val/Val carriers. We review here the critical role of the common functional COMT gene polymorphism, COMT enzyme activity, and the prefrontal dopamine levels in the regulation of sleep and wakefulness in normal subjects, in narcolepsy and other sleep-related disorders, and its impact on the response to psychostimulants.
Resumo:
Endothelial cell release of nitric oxide (NO) is a defining characteristic of nondiseased arteries, and abnormal endothelial NO release is both a marker of early atherosclerosis and a predictor of its progression and future events. Healthy coronaries respond to endothelial-dependent stressors with vasodilatation and increased coronary blood flow (CBF), but those with endothelial dysfunction respond with paradoxical vasoconstriction and reduced CBF. Recently, coronary MRI and isometric handgrip exercise (IHE) were reported to noninvasively quantify coronary endothelial function (CEF). However, it is not known whether the coronary response to IHE is actually mediated by NO and/or whether it is reproducible over weeks. To determine the contribution of NO, we studied the coronary response to IHE before and during infusion of N(G)-monomethyl-l-arginine (l-NMMA, 0.3 mg·kg(-1)·min(-1)), a NO-synthase inhibitor, in healthy volunteers. For reproducibility, we performed two MRI-IHE studies ∼8 wk apart in healthy subjects and patients with coronary artery disease (CAD). Changes from rest to IHE in coronary cross-sectional area (%CSA) and diastolic CBF (%CBF) were quantified. l-NMMA completely blocked normal coronary vasodilation during IHE [%CSA, 12.9 ± 2.5 (mean ± SE, placebo) vs. -0.3 ± 1.6% (l-NMMA); P < 0.001] and significantly blunted the increase in flow [%CBF, 47.7 ± 6.4 (placebo) vs. 10.6 ± 4.6% (l-NMMA); P < 0.001]. MRI-IHE measures obtained weeks apart strongly correlated for CSA (P < 0.0001) and CBF (P < 0.01). In conclusion, the normal human coronary vasoactive response to IHE is primarily mediated by NO. This noninvasive, reproducible MRI-IHE exam of NO-mediated CEF promises to be useful for studying CAD pathogenesis in low-risk populations and for evaluating translational strategies designed to alter CAD in patients.
Resumo:
Molecular evidence suggests that levels of vitamin D are associated with kidney function loss. Still, population-based studies are limited and few have considered the potential confounding effect of baseline kidney function. This study evaluated the association of serum 25-hydroxyvitamin D with change in eGFR, rapid eGFR decline, and incidence of CKD and albuminuria. Baseline (2003-2006) and 5.5-year follow-up data from a Swiss adult general population were used to evaluate the association of serum 25-hydroxyvitamin D with change in eGFR, rapid eGFR decline (annual loss >3 ml/min per 1.73 m(2)), and incidence of CKD and albuminuria. Serum 25-hydroxyvitamin D was measured at baseline using liquid chromatography-tandem mass spectrometry. eGFR and albuminuria were collected at baseline and follow-up. Multivariate linear and logistic regression models were used considering potential confounding factors. Among the 4280 people included in the analysis, the mean±SD annual eGFR change was -0.57±1.78 ml/min per 1.73 m(2), and 287 (6.7%) participants presented rapid eGFR decline. Before adjustment for baseline eGFR, baseline 25-hydroxyvitamin D level was associated with both mean annual eGFR change and risk of rapid eGFR decline, independently of baseline albuminuria. Once adjusted for baseline eGFR, associations were no longer significant. For every 10 ng/ml higher baseline 25-hydroxyvitamin D, the adjusted mean annual eGFR change was -0.005 ml/min per 1.73 m(2) (95% confidence interval, -0.063 to 0.053; P=0.87) and the risk of rapid eGFR decline was null (odds ratio, 0.93; 95% confidence interval, 0.79 to 1.08; P=0.33). Baseline 25-hydroxyvitamin D level was not associated with incidence of CKD or albuminuria. The association of 25-hydroxyvitamin D with eGFR decline is confounded by baseline eGFR. Sufficient 25-hydroxyvitamin D levels do not seem to protect from eGFR decline independently from baseline eGFR.
Resumo:
PURPOSE: To define the phenotypic manifestation, confirm the genetic basis, and delineate the pathogenic mechanisms underlying an oculoauricular syndrome (OAS). METHODS: Two individuals from a consanguineous family underwent comprehensive clinical phenotyping and electrodiagnostic testing (EDT). Genome-wide microarray analysis and Sanger sequencing of the candidate gene were used to identify the likely causal variant. Protein modelling, Western blotting, and dual luciferase assays were used to assess the pathogenic effect of the variant in vitro. RESULTS: Complex developmental ocular abnormalities of congenital cataract, anterior segment dysgenesis, iris coloboma, early-onset retinal dystrophy, and abnormal external ear cartilage presented in the affected family members. Genetic analyses identified a homozygous c.650A>C; p.(Gln217Pro) missense mutation within the highly conserved homeodomain of the H6 family homeobox 1 (HMX1) gene. Protein modelling predicts that the variant may have a detrimental effect on protein folding and/or stability. In vitro analyses were able to demonstrate that the mutation has no effect on protein expression but adversely alters function. CONCLUSIONS: Oculoauricular syndrome is an autosomal recessive condition that has a profound effect on the development of the external ear, anterior segment, and retina, leading to significant visual loss at an early age. This study has delineated the phenotype and confirmed HMX1 as the gene causative of OAS, enabling the description of only the second family with the condition. HMX1 is a key player in ocular development, possibly in both the pathway responsible for lens and retina development, and via the gene network integral to optic fissure closure.
Resumo:
UNLABELLED: CcrM is an orphan DNA methyltransferase nearly universally conserved in a vast group of Alphaproteobacteria. In Caulobacter crescentus, it controls the expression of key genes involved in the regulation of the cell cycle and cell division. Here, we demonstrate, using an experimental evolution approach, that C. crescentus can significantly compensate, through easily accessible genetic changes like point mutations, the severe loss in fitness due to the absence of CcrM, quickly improving its growth rate and cell morphology in rich medium. By analyzing the compensatory mutations genome-wide in 12 clones sampled from independent ΔccrM populations evolved for ~300 generations, we demonstrated that each of the twelve clones carried at least one mutation that potentially stimulated ftsZ expression, suggesting that the low intracellular levels of FtsZ are the major burden of ΔccrM mutants. In addition, we demonstrate that the phosphoenolpyruvate-carbohydrate phosphotransfer system (PTS) actually modulates ftsZ and mipZ transcription, uncovering a previously unsuspected link between metabolic regulation and cell division in Alphaproteobacteria. We present evidence that point mutations found in genes encoding proteins of the PTS provide the strongest fitness advantage to ΔccrM cells cultivated in rich medium despite being disadvantageous in minimal medium. This environmental sign epistasis might prevent such mutations from getting fixed under changing natural conditions, adding a plausible explanation for the broad conservation of CcrM. IMPORTANCE: In bacteria, DNA methylation has a variety of functions, including the control of DNA replication and/or gene expression. The cell cycle-regulated DNA methyltransferase CcrM modulates the transcription of many genes and is critical for fitness in Caulobacter crescentus. Here, we used an original experimental evolution approach to determine which of its many targets make CcrM so important physiologically. We show that populations lacking CcrM evolve quickly, accumulating an excess of mutations affecting, directly or indirectly, the expression of the ftsZ cell division gene. This finding suggests that the most critical function of CcrM in C. crescentus is to promote cell division by enhancing FtsZ intracellular levels. During this work, we also discovered an unexpected link between metabolic regulation and cell division that might extend to other Alphaproteobacteria.
Resumo:
BACKGROUND: Lung clearance index (LCI), a marker of ventilation inhomogeneity, is elevated early in children with cystic fibrosis (CF). However, in infants with CF, LCI values are found to be normal, although structural lung abnormalities are often detectable. We hypothesized that this discrepancy is due to inadequate algorithms of the available software package. AIM: Our aim was to challenge the validity of these software algorithms. METHODS: We compared multiple breath washout (MBW) results of current software algorithms (automatic modus) to refined algorithms (manual modus) in 17 asymptomatic infants with CF, and 24 matched healthy term-born infants. The main difference between these two analysis methods lies in the calculation of the molar mass differences that the system uses to define the completion of the measurement. RESULTS: In infants with CF the refined manual modus revealed clearly elevated LCI above 9 in 8 out of 35 measurements (23%), all showing LCI values below 8.3 using the automatic modus (paired t-test comparing the means, P < 0.001). Healthy infants showed normal LCI values using both analysis methods (n = 47, paired t-test, P = 0.79). The most relevant reason for false normal LCI values in infants with CF using the automatic modus was the incorrect recognition of the end-of-test too early during the washout. CONCLUSION: We recommend the use of the manual modus for the analysis of MBW outcomes in infants in order to obtain more accurate results. This will allow appropriate use of infant lung function results for clinical and scientific purposes. Pediatr Pulmonol. 2015; 50:970-977. © 2015 Wiley Periodicals, Inc.
Resumo:
Uromodulin (Tamm-Horsfall protein) is exclusively produced by the kidney and is the most abundant protein excreted in normal urine. The level of uromodulin in urine could represent a useful biomarker for renal tubular function. The study of Garimella et al. adds elements into the debate, by suggesting that, in elderly adults, low urinary uromodulin concentrations in spot urine identify people at risk of progressive kidney disease and mortality above and beyond established markers of kidney disease.