990 resultados para Modèles statistiques
Resumo:
We study the problem of measuring the uncertainty of CGE (or RBC)-type model simulations associated with parameter uncertainty. We describe two approaches for building confidence sets on model endogenous variables. The first one uses a standard Wald-type statistic. The second approach assumes that a confidence set (sampling or Bayesian) is available for the free parameters, from which confidence sets are derived by a projection technique. The latter has two advantages: first, confidence set validity is not affected by model nonlinearities; second, we can easily build simultaneous confidence intervals for an unlimited number of variables. We study conditions under which these confidence sets take the form of intervals and show they can be implemented using standard methods for solving CGE models. We present an application to a CGE model of the Moroccan economy to study the effects of policy-induced increases of transfers from Moroccan expatriates.
Resumo:
In this paper, we test a version of the conditional CAPM with respect to a local market portfolio, proxied by the Brazilian stock index during the 1976-1992 period. We also test a conditional APT model by using the difference between the 30-day rate (Cdb) and the overnight rate as a second factor in addition to the market portfolio in order to capture the large inflation risk present during this period. The conditional CAPM and APT models are estimated by the Generalized Method of Moments (GMM) and tested on a set of size portfolios created from a total of 25 securities exchanged on the Brazilian markets. The inclusion of this second factor proves to be crucial for the appropriate pricing of the portfolios.
Resumo:
A full understanding of public affairs requires the ability to distinguish between the policies that voters would like the government to adopt, and the influence that different voters or group of voters actually exert in the democratic process. We consider the properties of a computable equilibrium model of a competitive political economy in which the economic interests of groups of voters and their effective influence on equilibrium policy outcomes can be explicitly distinguished and computed. The model incorporates an amended version of the GEMTAP tax model, and is calibrated to data for the United States for 1973 and 1983. Emphasis is placed on how the aggregation of GEMTAP households into groups within which economic and political behaviour is assumed homogeneous affects the numerical representation of interests and influence for representative members of each group. Experiments with the model suggest that the changes in both interests and influence are important parts of the story behind the evolution of U.S. tax policy in the decade after 1973.
Resumo:
This paper exploits the term structure of interest rates to develop testable economic restrictions on the joint process of long-term interest rates and inflation when the latter is subject to a targeting policy by the Central Bank. Two competing models that econometrically describe agents’ inferences about inflation targets are developed and shown to generate distinct predictions on the behavior of interest rates. In an empirical application to the Canadian inflation target zone, results indicate that agents perceive the band to be substantially narrower than officially announced and asymmetric around the stated mid-point. The latter result (i) suggests that the monetary authority attaches different weights to positive and negative deviations from the central target, and (ii) challenges on empirical grounds the assumption, frequently made in the literature, that the policy maker’s loss function is symmetric (usually a quadratic function) around a desired inflation value.
Resumo:
We extend the class of M-tests for a unit root analyzed by Perron and Ng (1996) and Ng and Perron (1997) to the case where a change in the trend function is allowed to occur at an unknown time. These tests M(GLS) adopt the GLS detrending approach of Dufour and King (1991) and Elliott, Rothenberg and Stock (1996) (ERS). Following Perron (1989), we consider two models : one allowing for a change in slope and the other for both a change in intercept and slope. We derive the asymptotic distribution of the tests as well as that of the feasible point optimal tests PT(GLS) suggested by ERS. The asymptotic critical values of the tests are tabulated. Also, we compute the non-centrality parameter used for the local GLS detrending that permits the tests to have 50% asymptotic power at that value. We show that the M(GLS) and PT(GLS) tests have an asymptotic power function close to the power envelope. An extensive simulation study analyzes the size and power in finite samples under various methods to select the truncation lag for the autoregressive spectral density estimator. An empirical application is also provided.
Resumo:
This paper considers various asymptotic approximations in the near-integrated firstorder autoregressive model with a non-zero initial condition. We first extend the work of Knight and Satchell (1993), who considered the random walk case with a zero initial condition, to derive the expansion of the relevant joint moment generating function in this more general framework. We also consider, as alternative approximations, the stochastic expansion of Phillips (1987c) and the continuous time approximation of Perron (1991). We assess how these alternative methods provide or not an adequate approximation to the finite-sample distribution of the least-squares estimator in a first-order autoregressive model. The results show that, when the initial condition is non-zero, Perron's (1991) continuous time approximation performs very well while the others only offer improvements when the initial condition is zero.
Resumo:
We provide a theoretical framework to explain the empirical finding that the estimated betas are sensitive to the sampling interval even when using continuously compounded returns. We suppose that stock prices have both permanent and transitory components. The permanent component is a standard geometric Brownian motion while the transitory component is a stationary Ornstein-Uhlenbeck process. The discrete time representation of the beta depends on the sampling interval and two components labelled \"permanent and transitory betas\". We show that if no transitory component is present in stock prices, then no sampling interval effect occurs. However, the presence of a transitory component implies that the beta is an increasing (decreasing) function of the sampling interval for more (less) risky assets. In our framework, assets are labelled risky if their \"permanent beta\" is greater than their \"transitory beta\" and vice versa for less risky assets. Simulations show that our theoretical results provide good approximations for the means and standard deviations of estimated betas in small samples. Our results can be perceived as indirect evidence for the presence of a transitory component in stock prices, as proposed by Fama and French (1988) and Poterba and Summers (1988).
Resumo:
We characterize Paretian quasi-orders in the two-agent continuous case.
Resumo:
This article studies mobility patterns of German workers in light of a model of sector-specific human capital. Furthermore, I employ and describe little-used data on continuous on-the-job training occurring after apprenticeships. Results are presented describing the incidence and duration of continuous training. Continuous training is quite common, despite the high incidence of apprenticeships which precedes this part of a worker's career. Most previous studies have only distinguished between firm-specific and general human capital, usually concluding that training was general. Inconsistent with those conclusions, I show that German men are more likely to find a job within the same sector if they have received continuous training in that sector. These results are similar to those obtained for young U.S. workers, and suggest that sector-specific capital is an important feature of very different labor markets. In addition, they suggest that the observed effect of training on mobility is sensible to the state of the business cycle, indicating a more complex interaction between supply and demand that most theoretical models allow for.
Resumo:
In this paper, we look at how labor market conditions at different points during the tenure of individuals with firms are correlated with current earnings. Using data on individuals from the German Socioeconomic Panel for the 1985-1994 period, we find that both the contemporaneous unemployment rate and prior values of the unemployment rate are significantly correlated with current earnings, contrary to results for the American labor market. Estimated elasticities vary between 9 and 15 percent for the elasticity of earnings with respect to current unemployment rates, and between 6 and 10 percent with respect to unemployment rates at the start of current firm tenure. Moreover, whereas local unemployment rates determine levels of earnings, national rates influence contemporaneous variations in earnings. We interpret this result as evidence that German unions do, in fact, bargain over wages and employment, but that models of individualistic contracts, such as the implicit contract model, may explain some of the observed wage drift and longer-term wage movements reasonably well. Furthermore, we explore the heterogeneity of contracts over a variety of worker and job characteristics. In particular, we find evidence that contracts differ across firm size and worker type. Workers of large firms are remarkably more insulated from the job market than workers for any other type of firm, indicating the importance of internal job markets.
Resumo:
Using data from the National Longitudinal Survey of Youth (NLSY), we re-examine the effect of formal on-the-job training on mobility patterns of young American workers. By employing parametric duration models, we evaluate the economic impact of training on productive time with an employer. Confirming previous studies, we find a positive and statistically significant impact of formal on-the-job training on tenure with the employer providing the training. However, the expected net duration of the time spent in the training program is generally not significantly increased. We proceed to document and analyze intra-sectoral and cross-sectoral mobility patterns in order to infer whether training provides firm-specific, industry-specific, or general human capital. The econometric analysis rejects a sequential model of job separation in favor of a competing risks specification. We find significant evidence for the industry-specificity of training. The probability of sectoral mobility upon job separation decreases with training received in the current industry, whether with the last employer or previous employers, and employment attachment increases with on-the-job training. These results are robust to a number of variations on the base model.
Resumo:
We examine the relationship between the risk premium on the S&P 500 index return and its conditional variance. We use the SMEGARCH - Semiparametric-Mean EGARCH - model in which the conditional variance process is EGARCH while the conditional mean is an arbitrary function of the conditional variance. For monthly S&P 500 excess returns, the relationship between the two moments that we uncover is nonlinear and nonmonotonic. Moreover, we find considerable persistence in the conditional variance as well as a leverage effect, as documented by others. Moreover, the shape of these relationships seems to be relatively stable over time.
Resumo:
Recent work suggests that the conditional variance of financial returns may exhibit sudden jumps. This paper extends a non-parametric procedure to detect discontinuities in otherwise continuous functions of a random variable developed by Delgado and Hidalgo (1996) to higher conditional moments, in particular the conditional variance. Simulation results show that the procedure provides reasonable estimates of the number and location of jumps. This procedure detects several jumps in the conditional variance of daily returns on the S&P 500 index.
Resumo:
Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity. We establish the asymptotic validity of three easy-to-implement alternative bootstrap proposals for stationary autoregressive processes with m.d.s. errors subject to possible conditional heteroskedasticity of unknown form. These proposals are the fixed-design wild bootstrap, the recursive-design wild bootstrap and the pairwise bootstrap. In a simulation study all three procedures tend to be more accurate in small samples than the conventional large-sample approximation based on robust standard errors. In contrast, standard residual-based bootstrap methods for models with i.i.d. errors may be very inaccurate if the i.i.d. assumption is violated. We conclude that in many empirical applications the proposed robust bootstrap procedures should routinely replace conventional bootstrap procedures for autoregressions based on the i.i.d. error assumption.
Resumo:
This paper studies testing for a unit root for large n and T panels in which the cross-sectional units are correlated. To model this cross-sectional correlation, we assume that the data is generated by an unknown number of unobservable common factors. We propose unit root tests in this environment and derive their (Gaussian) asymptotic distribution under the null hypothesis of a unit root and local alternatives. We show that these tests have significant asymptotic power when the model has no incidental trends. However, when there are incidental trends in the model and it is necessary to remove heterogeneous deterministic components, we show that these tests have no power against the same local alternatives. Through Monte Carlo simulations, we provide evidence on the finite sample properties of these new tests.