952 resultados para Mixed integer non-linear programming (MINLP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to help supply chain managers to determine the value of retailer-supplier partnership initiatives beyond information sharing (IS) according to their specific business environment under time-varying demand conditions. For this purpose, we use integer linear programming models to quantify the benefits that can be accrued by a retailer, a supplier and system as a whole from shift in inventory ownership and shift in decision-making power with that of IS. The results of a detailed numerical study pertaining to static time horizon reveal that the shift in inventory ownership provides system-wide cost benefits in specific settings. Particularly, when it induces the retailer to order larger quantities and the supplier also prefers such orders due to significantly high setup and shipment costs. We observe that the relative benefits of shift in decision-making power are always higher than the shift in inventory ownership under all the conditions. The value of the shift in decision-making power is greater than IS particularly when the variability of underlying demand is low and time-dependent variation in production cost is high. However, when the shipment cost is negligible and order issuing efficiency of the supplier is low, the cost benefits of shift in decision-making power beyond IS are not significant. © 2012 Taylor & Francis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using suitable coupled Navier-Stokes Equations for an incompressible Newtonian fluid we investigate the linear and non-linear steady state solutions for both a homogeneously and a laterally heated fluid with finite Prandtl Number (Pr=7) in the vertical orientation of the channel. Both models are studied within the Large Aspect Ratio narrow-gap and under constant flux conditions with the channel closed. We use direct numerics to identify the linear stability criterion in parametric terms as a function of Grashof Number (Gr) and streamwise infinitesimal perturbation wavenumber (making use of the generalised Squire’s Theorem). We find higher harmonic solutions at lower wavenumbers with a resonance of 1:3exist, for both of the heating models considered. We proceed to identify 2D secondary steady state solutions, which bifurcate from the laminar state. Our studies show that 2D solutions are found not to exist in certain regions of the pure manifold, where we find that 1:3 resonant mode 2D solutions exist, for low wavenumber perturbations. For the homogeneously heated fluid, we notice a jump phenomenon existing between the pure and resonant mode secondary solutions for very specific wavenumbers .We attempt to verify whether mixed mode solutions are present for this model by considering the laterally heated model with the same geometry. We find mixed mode solutions for the laterally heated model showing that a bridge exists between the pure and 1:3 resonant mode 2D solutions, of which some are stationary and some travelling. Further, we show that for the homogeneously heated fluid that the 2D solutions bifurcate in hopf bifurcations and there exists a manifold where the 2D solutions are stable to Eckhaus criterion, within this manifold we proceed to identify 3D tertiary solutions and find that the stability for said 3D bifurcations is not phase locked to the 2D state. For the homogeneously heated model we identify a closed loop within the neutral stability curve for higher perturbation wavenumubers and analyse the nature of the multiple 2D bifurcations around this loop for identical wavenumber and find that a temperature inversion occurs within this loop. We conclude that for a homogeneously heated fluid it is possible to have abrup ttransitions between the pure and resonant 2D solutions, and that for the laterally heated model there exist a transient bifurcation via mixed mode solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the contemporary customer-driven supply chain, maximization of customer service plays an equally important role as minimization of costs for a company to retain and increase its competitiveness. This article develops a multiple-criteria optimization approach, combining the analytic hierarchy process (AHP) and an integer linear programming (ILP) model, to aid the design of an optimal logistics distribution network. The proposed approach outperforms traditional cost-based optimization techniques because it considers both quantitative and qualitative factors and also aims at maximizing the benefits of deliverer and customers. In the approach, the AHP is used to determine the relative importance weightings or priorities of alternative warehouses with respect to some critical customer-oriented criteria. The results of AHP prioritization are utilized as the input of the ILP model, the objective of which is to select the best warehouses at the lowest possible cost. In this article, two commercial packages are used: including Expert Choice and LINDO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider point sets in (Z^2,n) where no three points are on a line – also called caps or arcs. For the determination of caps with maximum cardinality and complete caps with minimum cardinality we provide integer linear programming formulations and identify some values for small n.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectrally modulated Airy-based pulses peak amplitude modulation (PAM) in linear dispersive media is investigated, designed, and numerically simulated. As it is shown here, it is possible to design the spectral modulation of the initial Airy-based pulses to obtain a pre-defined PAM profile as the pulse propagates. Although optical pulses self-amplitude modulation is a well-known effect under non-linear propagation, the designed Airy-based pulses exhibit PAM under linear dispersive propagation. This extraordinary linear propagation property can be applied in many kinds of dispersive media, enabling its use in a broad range of experiments and applications. © 2013 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To describe the effect of age and body size on enantiomer selective pharmacokinetic (PK) of intravenous ketorolac in children using a microanalytical assay. Methods: Blood samples were obtained at 0, 15 and 30 min and at 1, 2, 4, 6, 8 and 12 h after a weight-dependent dose of ketorolac. Enantiomer concentration was measured using a liquid chromatography tandem mass spectrometry method. Non-linear mixed-effect modelling was used to assess PK parameters. Key findings: Data from 11 children (1.7–15.6 years, weight 10.7–67.4 kg) were best described by a two-compartment model for R(+), S(−) and racemic ketorolac. Only weight (WT) significantly improved the goodness of fit. The final population models were CL = 1.5 × (WT/46)0.75, V1 = 8.2 × (WT/46), Q = 3.4 × (WT/46)0.75, V2 = 7.9 × (WT/46), CL = 2.98 × (WT/46), V1 = 13.2 × (WT/46), Q = 2.8 × (WT/46)0.75, V2 = 51.5 × (WT/46), and CL = 1.1 × (WT/46)0.75, V1 = 4.9 × (WT/46), Q = 1.7 × (WT/46)0.75 and V2 = 6.3 × (WT/46)for R(+), S(−) and racemic ketorolac. Conclusions: Only body weight influenced the PK parameters for R(+) and S(−) ketorolac. Using allometric size scaling significantly affected the clearances (CL, Q) and volumes of distribution (V1, V2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMS subject classification: 90C05, 90A14.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In non-linear random effects some attention has been very recently devoted to the analysis ofsuitable transformation of the response variables separately (Taylor 1996) or not (Oberg and Davidian 2000) from the transformations of the covariates and, as far as we know, no investigation has been carried out on the choice of link function in such models. In our study we consider the use of a random effect model when a parameterized family of links (Aranda-Ordaz 1981, Prentice 1996, Pregibon 1980, Stukel 1988 and Czado 1997) is introduced. We point out the advantages and the drawbacks associated with the choice of this data-driven kind of modeling. Difficulties in the interpretation of regression parameters, and therefore in understanding the influence of covariates, as well as problems related to loss of efficiency of estimates and overfitting, are discussed. A case study on radiotherapy usage in breast cancer treatment is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Femtosecond laser microfabrication has emerged over the last decade as a 3D flexible technology in photonics. Numerical simulations provide an important insight into spatial and temporal beam and pulse shaping during the course of extremely intricate nonlinear propagation (see e.g. [1,2]). Electromagnetics of such propagation is typically described in the form of the generalized Non-Linear Schrdinger Equation (NLSE) coupled with Drude model for plasma [3]. In this paper we consider a multi-threaded parallel numerical solution for a specific model which describes femtosecond laser pulse propagation in transparent media [4, 5]. However our approach can be extended to similar models. The numerical code is implemented in NVIDIA Graphics Processing Unit (GPU) which provides an effitient hardware platform for multi-threded computing. We compare the performance of the described below parallel code implementated for GPU using CUDA programming interface [3] with a serial CPU version used in our previous papers [4,5]. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highways are generally designed to serve a mixed traffic flow that consists of passenger cars, trucks, buses, recreational vehicles, etc. The fact that the impacts of these different vehicle types are not uniform creates problems in highway operations and safety. A common approach to reducing the impacts of truck traffic on freeways has been to restrict trucks to certain lane(s) to minimize the interaction between trucks and other vehicles and to compensate for their differences in operational characteristics. ^ The performance of different truck lane restriction alternatives differs under different traffic and geometric conditions. Thus, a good estimate of the operational performance of different truck lane restriction alternatives under prevailing conditions is needed to help make informed decisions on truck lane restriction alternatives. This study develops operational performance models that can be applied to help identify the most operationally efficient truck lane restriction alternative on a freeway under prevailing conditions. The operational performance measures examined in this study include average speed, throughput, speed difference, and lane changes. Prevailing conditions include number of lanes, interchange density, free-flow speeds, volumes, truck percentages, and ramp volumes. ^ Recognizing the difficulty of collecting sufficient data for an empirical modeling procedure that involves a high number of variables, the simulation approach was used to estimate the performance values for various truck lane restriction alternatives under various scenarios. Both the CORSIM and VISSIM simulation models were examined for their ability to model truck lane restrictions. Due to a major problem found in the CORSIM model for truck lane modeling, the VISSIM model was adopted as the simulator for this study. ^ The VISSIM model was calibrated mainly to replicate the capacity given in the 2000 Highway Capacity Manual (HCM) for various free-flow speeds under the ideal basic freeway section conditions. Non-linear regression models for average speed, throughput, average number of lane changes, and speed difference between the lane groups were developed. Based on the performance models developed, a simple decision procedure was recommended to select the desired truck lane restriction alternative for prevailing conditions. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Next-generation integrated wireless local area network (WLAN) and 3G cellular networks aim to take advantage of the roaming ability in a cellular network and the high data rate services of a WLAN. To ensure successful implementation of an integrated network, many issues must be carefully addressed, including network architecture design, resource management, quality-of-service (QoS), call admission control (CAC) and mobility management. ^ This dissertation focuses on QoS provisioning, CAC, and the network architecture design in the integration of WLANs and cellular networks. First, a new scheduling algorithm and a call admission control mechanism in IEEE 802.11 WLAN are presented to support multimedia services with QoS provisioning. The proposed scheduling algorithms make use of the idle system time to reduce the average packet loss of realtime (RT) services. The admission control mechanism provides long-term transmission quality for both RT and NRT services by ensuring the packet loss ratio for RT services and the throughput for non-real-time (NRT) services. ^ A joint CAC scheme is proposed to efficiently balance traffic load in the integrated environment. A channel searching and replacement algorithm (CSR) is developed to relieve traffic congestion in the cellular network by using idle channels in the WLAN. The CSR is optimized to minimize the system cost in terms of the blocking probability in the interworking environment. Specifically, it is proved that there exists an optimal admission probability for passive handoffs that minimizes the total system cost. Also, a method of searching the probability is designed based on linear-programming techniques. ^ Finally, a new integration architecture, Hybrid Coupling with Radio Access System (HCRAS), is proposed for lowering the average cost of intersystem communication (IC) and the vertical handoff latency. An analytical model is presented to evaluate the system performance of the HCRAS in terms of the intersystem communication cost function and the handoff cost function. Based on this model, an algorithm is designed to determine the optimal route for each intersystem communication. Additionally, a fast handoff algorithm is developed to reduce the vertical handoff latency.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bus stops are key links in the journeys of transit patrons with disabilities. Inaccessible bus stops prevent people with disabilities from using fixed-route bus services, thus limiting their mobility. The Americans with Disabilities Act (ADA) of 1990 prescribes the minimum requirements for bus stop accessibility by riders with disabilities. Due to limited budgets, transit agencies can only select a limited number of bus stop locations for ADA improvements annually. These locations should preferably be selected such that they maximize the overall benefits to patrons with disabilities. In addition, transit agencies may also choose to implement the universal design paradigm, which involves higher design standards than current ADA requirements and can provide amenities that are useful for all riders, like shelters and lighting. Many factors can affect the decision to improve a bus stop, including rider-based aspects like the number of riders with disabilities, total ridership, customer complaints, accidents, deployment costs, as well as locational aspects like the location of employment centers, schools, shopping areas, and so on. These interlacing factors make it difficult to identify optimum improvement locations without the aid of an optimization model. This dissertation proposes two integer programming models to help identify a priority list of bus stops for accessibility improvements. The first is a binary integer programming model designed to identify bus stops that need improvements to meet the minimum ADA requirements. The second involves a multi-objective nonlinear mixed integer programming model that attempts to achieve an optimal compromise among the two accessibility design standards. Geographic Information System (GIS) techniques were used extensively to both prepare the model input and examine the model output. An analytic hierarchy process (AHP) was applied to combine all of the factors affecting the benefits to patrons with disabilities. An extensive sensitivity analysis was performed to assess the reasonableness of the model outputs in response to changes in model constraints. Based on a case study using data from Broward County Transit (BCT) in Florida, the models were found to produce a list of bus stops that upon close examination were determined to be highly logical. Compared to traditional approaches using staff experience, requests from elected officials, customer complaints, etc., these optimization models offer a more objective and efficient platform on which to make bus stop improvement suggestions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research aims at a study of the hybrid flow shop problem which has parallel batch-processing machines in one stage and discrete-processing machines in other stages to process jobs of arbitrary sizes. The objective is to minimize the makespan for a set of jobs. The problem is denoted as: FF: batch1,sj:Cmax. The problem is formulated as a mixed-integer linear program. The commercial solver, AMPL/CPLEX, is used to solve problem instances to their optimality. Experimental results show that AMPL/CPLEX requires considerable time to find the optimal solution for even a small size problem, i.e., a 6-job instance requires 2 hours in average. A bottleneck-first-decomposition heuristic (BFD) is proposed in this study to overcome the computational (time) problem encountered while using the commercial solver. The proposed BFD heuristic is inspired by the shifting bottleneck heuristic. It decomposes the entire problem into three sub-problems, and schedules the sub-problems one by one. The proposed BFD heuristic consists of four major steps: formulating sub-problems, prioritizing sub-problems, solving sub-problems and re-scheduling. For solving the sub-problems, two heuristic algorithms are proposed; one for scheduling a hybrid flow shop with discrete processing machines, and the other for scheduling parallel batching machines (single stage). Both consider job arrival and delivery times. An experiment design is conducted to evaluate the effectiveness of the proposed BFD, which is further evaluated against a set of common heuristics including a randomized greedy heuristic and five dispatching rules. The results show that the proposed BFD heuristic outperforms all these algorithms. To evaluate the quality of the heuristic solution, a procedure is developed to calculate a lower bound of makespan for the problem under study. The lower bound obtained is tighter than other bounds developed for related problems in literature. A meta-search approach based on the Genetic Algorithm concept is developed to evaluate the significance of further improving the solution obtained from the proposed BFD heuristic. The experiment indicates that it reduces the makespan by 1.93 % in average within a negligible time when problem size is less than 50 jobs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. ^ For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver.^ The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. ^ The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.^