961 resultados para Mitotic checkpoint


Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA repair is required by organisms to prevent the accumulation of mutations and to maintain the integrity of genetic information. Mammalian cells that have been treated with agents that damage DNA have an increase in p53 levels, a p53-dependent arrest at G1 in the cell cycle, and a p53-dependent apoptotic response. It has been hypothesized that this block in cell cycle progression is necessary to allow time for DNA repair or to direct the damaged cell to an apoptotic pathway. This hypothesis predicts that p53-deficient cells would have an abnormal apoptotic response and exhibit a "mutator" phenotype. Using a sensitive assay for the accumulation of point mutations, small deletions, and insertions, we have directly tested whether p53-deficient cells exhibit an increased frequency of mutation before and after exposure to DNA-damaging agents. We report that wild-type and p53-deficient fibroblasts, thymocytes, and tumor tissue have indistinguishable rates of point mutation accumulation in a transgenic lacI target gene. These results suggest that the role of p53 in G1 checkpoint control and tumor suppression does not affect the accumulation of point mutations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nuclear import system is highly conserved among eukaryotes. Here we report the effects of a conditional mutation in SRP1, which encodes a Saccharomyces cerevisiae homolog of the vertebrate nuclear import receptor importin. Importin was isolated as a factor required for the initial targeting step of a nuclear import substrate to the nuclear envelope in a mammalian in vitro assay. We show that yeast Srp1 is similarly required for protein import. In addition, Srp1 is also required for the execution of mitosis: we demonstrate that cells containing a conditional mutation of SRP1 arrest with a G2/M phenotype in a manner analogous to classic cdc mutants. This defect may be due to the failure of the mutant to degrade the mitotic cyclin Clb2 and other proteins required for mitosis. The requirement of a nuclear import receptor for cell cycle-regulated proteolysis implies that import of cell cycle regulators into the nucleus is critical for cell cycle progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that the higher plant Arabidopsis thaliana has a serine-arginine-rich (SR) protein family whose members contain a phosphoepitope shared by the animal SR family of splicing factors. In addition, we report the cloning and characterization of a cDNA encoding a higher-plant SR protein from Arabidopsis, SR1, which has striking sequence and structural homology to the human splicing factor SF2/ASF. Similar to SF2/ASF, the plant SR1 protein promotes splice site switching in mammalian nuclear extracts. A novel feature of the Arabidopsis SR protein is a C-terminal domain containing a high concentration of proline, serine, and lysine residues (PSK domain), a composition reminiscent of histones. This domain includes a putative phosphorylation site for the mitotic kinase cyclin/p34cdc2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microtubule asters forming the mitotic spindle are assembled around two centrosomes through the process of dynamic instability in which microtubules alternate between growing and shrinking states. By modifying the dynamics of this assembly process, cell cycle enzymes, such as cdc2 cyclin kinases, regulate length distributions in the asters. It is believed that the same enzymes control the number of assembled microtubules by changing the "nucleating activity" of the centrosomes. Here we show that assembly of microtubule asters may be strongly altered by effects connected with diffusion of tubulin monomers. Theoretical analysis of a simple model describing assembly of microtubule asters clearly shows the existence of a region surrounding the centrosome depleted in GTP tubulin. The number of assembled microtubules may in some cases be limited by this depletion effect rather than by the number of available nucleation sites on the centrosome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endosperm development in Zea mays is characterized by a period of intense mitotic activity followed by a period in which mitosis is essentially eliminated and the cell cycle becomes one of alternating S and G phases, leading to endoreduplication of the nuclear DNA. The endosperm represents a significant contribution to the grain yield of maize; thus, methods that facilitate the study of cellular kinetics may be useful in discerning cellular and molecular components of grain yield. Two mathematical models have been developed to describe the kinetics of endosperm growth. The first describes the kinetics of mitosis during endosperm development; the second describes the kinetics of DNA endoreduplication during endosperm development. The mitotic model is a modification of standard growth curves. The endoreduplication model is composed of six differential equations that represent the progression of nuclei from one DNA content to another during the endoreduplication process. Total nuclei number per endosperm and the number of 3C, 6C, 12C, 24C, 48C, and 96C nuclei per endosperm (C is the haploid DNA content per nucleus) for inbred W64A from 8 to 18 days after pollination were determined by flow cytometry. The results indicate that the change in number of nuclei expressed as a function of the number of days after pollination is the same from one yearly crop to another. These data were used in the model to determine the endosperm growth rate, the maximum nuclei number per endosperm, and transition rates from one C value to the next higher C value. The kinetics of endosperm development are reasonably well represented by the models. Thus, the models provide a means to quantify the complex pattern of endosperm development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The yeast gene KEM1 (also named SEP1/DST2/XRN1/RAR5) produces a G4-DNA-dependent nuclease that binds to G4 tetraplex DNA structure and cuts in a single-stranded region 5' to the G4 structure. G4-DNA generated from yeast telomeric oligonucleotides competitively inhibits the cleavage reaction, suggesting that this enzyme may interact with yeast telomeres in vivo. Homozygous deletions of the KEM1 gene in yeast block meiosis at the pachytene stage, which is consistent with the hypothesis that G4 tetraplex DNA may be involved in homologous chromosome pairing during meiosis. We conjectured that the mitotic defects of kem1/sep1 mutant cells, such as a higher chromosome loss rate, are also due to failure in processing G4-DNA, especially at telomeres. Here we report two phenotypes associated with a kem1-null allele, cellular senescence and telomere shortening, that provide genetic evidence that G4 tetraplex DNA may play a role in telomere functioning. In addition, our results reveal that chromosome ends in the same cells behave differently in a fashion dependent on the KEM1 gene product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(ADP-ribose) polymerase [PARP; NAD+ ADP-ribosyltransferase; NAD+:poly(adenosine-diphosphate-D-ribosyl)-acceptor ADP-D-ribosyltransferase, EC 2.4.2.30] is a zinc-dependent eukaryotic DNA-binding protein that specifically recognizes DNA strand breaks produced by various genotoxic agents. To study the biological function of this enzyme, we have established stable HeLa cell lines that constitutively produce the 46-kDa DNA-binding domain of human PARP (PARP-DBD), leading to the trans-dominant inhibition of resident PARP activity. As a control, a cell line was constructed, producing a point-mutated version of the DBD, which has no affinity for DNA in vitro. Expression of the PARP-DBD had only a slight effect on undamaged cells but had drastic consequences for cells treated with genotoxic agents. Exposure of cell lines expressing the wild-type (wt) or the mutated PARP-DBD, with low doses of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) resulted in an increase in their doubling time, a G2 + M accumulation, and a marked reduction in cell survival. However, UVC irradiation had no preferential effect on the cell growth or viability of cell lines expressing the PARP-DBD. These PARP-DBD-expressing cells treated with MNNG presented the characteristic nucleosomal DNA ladder, one of the hallmarks of cell death by apoptosis. Moreover, these cells exhibited chromosomal instability as demonstrated by higher frequencies of both spontaneous and MNNG-induced sister chromatid exchanges. Surprisingly, the line producing the mutated DBD had the same behavior as those producing the wt DBD, indicating that the mechanism of action of the dominant-negative mutant involves more than its DNA-binding function. Altogether, these results strongly suggest that PARP is an element of the G2 checkpoint in mammalian cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determined the distribution of 11 different transposable elements on Drosophila melanogaster mitotic chromosomes by using high-resolution fluorescent in situ hybridization (FISH) coupled with charge-coupled device camera analysis. Nine of these transposable elements (copia, gypsy, mdg-1, blood, Doc, I, F, G, and Bari-1) are preferentially clustered into one or more discrete heterochromatic regions in chromosomes of the Oregon-R laboratory stock. Moreover, FISH analysis of geographically distant strains revealed that the locations of these heterochromatic transposable element clusters are highly conserved. The P and hobo elements, which are likely to have invaded the D. melanogaster genome at the beginning of this century, are absent from Oregon-R heterochromatin but clearly exhibit heterochromatic clusters in certain natural populations. Together these data indicate that transposable elements are major structural components of Drosophila heterochromatin, and they change the current views on the role of transposable elements in host genome evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Occupational exposure to benzene is known to cause leukemia, but the mechanism remains unclear. Unlike most other carcinogens, benzene and its metabolites are weakly or nonmutagenic in most simple gene mutation assays. Benzene and its metabolites do, however, produce chromosomal damage in a variety of systems. Here, we have used the glycophorin A (GPA) gene loss mutation assay to evaluate the nature of DNA damage produced by benzene in 24 workers heavily exposed to benzene and 23 matched control individuals in Shanghai, China. The GPA assay identifies stem cell or precursor erythroid cell mutations expressed in peripheral erythrocytes of MN-heterozygous subjects, distinguishing the NN and N phi mutant variants. A significant increase in the NN GPA variant cell frequency (Vf) was found in benzene-exposed workers as compared with unexposed control individuals (mean +/- SEM, 13.9 +/- 1.7 per million cells vs. 7.4 +/- 1.1 per million cells in control individuals; P = 0.0002). In contrast, no significant difference existed between the two groups for the N phi Vf (9.1 +/- 0.9 vs. 8.8 +/- 1.8 per million cells; P = 0.21). Further, lifetime cumulative occupational exposure to benzene was associated with the NN Vf (P = 0.005) but not with the N phi Vf (P = 0.31), suggesting that NN mutations occur in longer-lived bone marrow stem cells. NN variants result from loss of the GPA M allele and duplication of the N allele, presumably through recombination mechanisms, whereas NO variants arise from gene inactivation, presumably due to point mutations and deletions. Thus, these results suggest that benzene produces gene-duplicating mutations but does not produce gene-inactivating mutations at the GPA locus in bone marrow cells of humans exposed to high benzene levels. This finding is consistent with data on the genetic toxicology of benzene and its metabolites and adds further weight to the hypothesis that chromosome damage and mitotic recombination are important in benzene-induced leukemia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUÇÃO: O transplante hepático é o único tratamento efetivo para uma variedade de doenças hepáticas irreversíveis. No entanto, o número limitado de doadores pediátricos leva ao uso de enxertos hepáticos de doadores adultos, com necessidade de anastomoses vasculares mais complexas. Essas anastomoses tornam-se complicadas pela diferença no calibre dos vasos entre o doador e o receptor, resultando em alterações do fluxo sanguíneo, estenose da anastomose venosa ou arterial e trombose. Os efeitos para regeneração hepática decorrentes da privação do fluxo sanguíneo pela veia porta ou pela artéria hepática não estão completamente elucidados. Experimentalmente, quando um lobo do fígado não recebe o fluxo venoso portal, é observada atrofia deste segmento e hipertrofia do restante do órgão perfundido. Embora existam vários modelos experimentais para estudo da regeneração hepática, poucos são focados em animais em crescimento. Além disso, os efeitos regenerativos de drogas como o tacrolimus e a insulina precisam ser pesquisados, com o objetivo de encontrar um tratamento ideal para a insuficiência hepática ou um método de estimular a regeneração do fígado após ressecções ou transplantes parciais. O objetivo do presente estudo é descrever modelos de regeneração hepática em ratos em crescimento com: 1) ausência de fluxo hepático arterial e 2) redução do fluxo portal. Adicionalmente, o estudo avalia o efeito pró-regenerativo do tacrolimus e da insulina nesses modelos descritos. MÉTODOS: cento e vinte ratos (entre 50 e 100g de peso) foram divididos em 6 grupos, de acordo com o tipo de intervenção cirúrgica: Grupo 1, incisão abdominal sem intervenção hepática; Grupo 2, hepatectomia a 70%; Grupo 3, hepatectomia a 70% + estenose de veia porta; Grupo 4, hepatectomia a 70% + ligadura da artéria hepática; Grupo 5, hepatectomia a 70% + estenose de veia porta + insulina; Grupo 6, hepatectomia a 70% + estenose de veia porta + tacrolimus. Os animais dos grupos 1 ao 4 foram subdivididos em 5 subgrupos de acordo com o momento da morte: 1, 2, 3, 5 e 10 dias após a intervenção cirúrgica. Os animais dos grupos 5 e 6 foram subdividos em 2 subgrupos de acordo com o momento da morte: 2 e 10 dias após a intervenção cirúrgica. Os lobos hepáticos remanescentes foram submetidos à análise histomorfométrica, imuno-histoquímica e molecular. RESULTADOS: Verificou-se que no grupo com hepatectomia a 70% houve recuperação do peso do fígado no terceiro dia com aumento da atividade mitótica, enquanto que no grupo com estenose portal não se observou esse fenômeno (p < 0,001). A insulina e o tacrolimus promoveram aumento do peso do fígado e do índice mitótico. A atividade mitótica foi considerada aumentada nos animais dos grupos hepatectomia, hepatectomia + ligadura da artéria, insulina e tacrolimus; e esse parâmetro estava reduzido no grupo submetido à hepatectomia + estenose portal (p < 0,001). A expressão de interleucina 6 estava presente em todos os animais, sendo significativamente maior nos grupos hepatectomia, hepatectomia + ligadura da artéria e significativamente menor no grupo hepatectomia + estenose portal. Entretanto, a administração de tacrolimus ou insulina recuperou os níveis teciduais de interleucina 6 no grupo com estenose portal. CONCLUSÕES: No presente estudo foi padronizado um modelo simples e facilmente reprodutível para estudar a regeneração hepática em ratos em crescimento com redução do fluxo arterial ou venoso para o fígado. Foi demonstrado que a administração de insulina ou tacrolimus é capaz de reverter os efeitos deletérios da estenose portal na regeneração hepática. A obstrução do fluxo arterial não afetou a capacidade regenerativa hepática

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Un dérèglement du cycle cellulaire peut causer le cancer. Lors de la cytocinèse un anneau contractile d’actine et de myosine se forme, se contracte, et donne un anneau du midbody qui mène à l’abscision. Le processus de cytocinèse est sous le contrôle de protéines telles que la GTPase Rho qui active la cytocinèse et les cyclines-Cdks qui l'inhibent. La Drosophile possède 3 cyclines mitotiques CycA/ CycB/ CycB3 qui sont successivement dégradées en fin de mitose et permettent l'initiation de la cytocinèse. La dernière étape d’abscission est un phénomène qui reste encore peu connu. Les protéines Vps4 et CHMP4C liées à ANCHR vont, sous la dépendance de la kinase Aurora B, promouvoir l’abscision mais, suite à quelques études récentes, il semble y avoir une implication de la cycline B. Ici, le but était de tester l’implication de cette cycline dans les processus de cytocinèse et d’abscision, elle a été menée par microscopie à haute résolution en temps réel avec des cellules S2 de l’organisme Drosophila melanogaster par le suivi de protéines recombinantes fluorescentes. L’étude a été divisée en deux axes : gain et perte de fonction par l’intermédiaire respectivement de la protéine Cycline B recombinante stable, non dégradable (CycBstable-GFP) et l’inhibition par l’utilisation d’ARN double brin (ARNdb) sur l’endogène. La CycBstable-GFP a perturbé la cytocinèse en induisant plusieurs anneaux contractiles et midbodies. En revanche la réduction de l’expression de CycB n'a pas eu d’effet observable, et elle ne semble pas avoir d’action sur l’abscission malgré le recrutement de CycB-GFP au midbody tardif. En revanche la protéine Cdk1 semble avoir un rôle dans l'abscision puisque sa réduction d’expression a induit un délai. Elle a donc une implication potentielle sur la cytocinèse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animals from flies to humans adjust their development in response to environmental conditions through a series of developmental checkpoints, which alter the sensitivity of organs to environmental perturbation. Despite their importance, we know little about the molecular mechanisms through which this change in sensitivity occurs. Here we identify two phases of sensitivity to larval nutrition that contribute to plasticity in ovariole number, an important determinant of fecundity, in Drosophila melanogaster. These two phases of sensitivity are separated by the developmental checkpoint called "critical weight"; poor nutrition has greater effects on ovariole number in larvae before critical weight than after. We find that this switch in sensitivity results from distinct developmental processes. In precritical weight larvae, poor nutrition delays the onset of terminal filament cell differentiation, the starting point for ovariole development, and strongly suppresses the rate of terminal filament addition and the rate of increase in ovary volume. Conversely, in postcritical weight larvae, poor nutrition affects only the rate of increase in ovary volume. Our results further indicate that two hormonal pathways, the insulin/insulin-like growth factor and the ecdysone-signaling pathways, modulate the timing and rates of all three developmental processes. The change in sensitivity in the ovary results from changes in the relative contribution of each pathway to the rates of terminal filament addition and increase in ovary volume before and after critical weight. Our work deepens our understanding of how hormones act to modify the sensitivity of organs to environmental conditions, thereby affecting their plasticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kinetochore forms the site of attachment for mitotic spindle microtubules driving chromosome segregation. The interdependent protein interactions in this large structure have made it difficult to dissect the function of its components. In this issue, Hori et al. (2013. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201210106) present a novel and powerful methodology to address the sufficiency of individual proteins for the creation of a functional de novo centromere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Centromeres form the site of chromosome attachment to microtubules during mitosis. Identity of these loci is maintained epigenetically by nucleosomes containing the histone H3 variant CENP-A. Propagation of CENP-A chromatin is uncoupled from DNA replication initiating only during mitotic exit. We now demonstrate that inhibition of Cdk1 and Cdk2 activities is sufficient to trigger CENP-A assembly throughout the cell cycle in a manner dependent on the canonical CENP-A assembly machinery. We further show that the key CENP-A assembly factor Mis18BP1(HsKNL2) is phosphorylated in a cell cycle-dependent manner that controls its centromere localization during mitotic exit. These results strongly support a model in which the CENP-A assembly machinery is poised for activation throughout the cell cycle but kept in an inactive noncentromeric state by Cdk activity during S, G2, and M phases. Alleviation of this inhibition in G1 phase ensures tight coupling between DNA replication, cell division, and subsequent centromere maturation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromatin-based epigenetic inheritance cooperates with cis-acting DNA sequence information to propagate gene expression states and chromosome architecture across cell division cycles. Histone proteins and their modifications are central components of epigenetic systems but how, and to what extent, they are propagated is a matter of continued debate. Centromeric nucleosomes, marked by the histone H3 variant CENP-A, are stable across mitotic divisions and are assembled in a locus specific and cell cycle controlled manner. The mechanism of inheritance of this unique chromatin domain has important implications for how general nucleosome transmission is controlled in space and time.