875 resultados para Mining
Resumo:
Software product line modeling aims at capturing a set of software products in an economic yet meaningful way. We introduce a class of variability models that capture the sharing between the software artifacts forming the products of a software product line (SPL) in a hierarchical fashion, in terms of commonalities and orthogonalities. Such models are useful when analyzing and verifying all products of an SPL, since they provide a scheme for divide-and-conquer-style decomposition of the analysis or verification problem at hand. We define an abstract class of SPLs for which variability models can be constructed that are optimal w.r.t. the chosen representation of sharing. We show how the constructed models can be fed into a previously developed algorithmic technique for compositional verification of control-flow temporal safety properties, so that the properties to be verified are iteratively decomposed into simpler ones over orthogonal parts of the SPL, and are not re-verified over the shared parts. We provide tool support for our technique, and evaluate our tool on a small but realistic SPL of cash desks.
Resumo:
We present in this article an automated framework that extracts product adopter information from online reviews and incorporates the extracted information into feature-based matrix factorization formore effective product recommendation. In specific, we propose a bootstrapping approach for the extraction of product adopters from review text and categorize them into a number of different demographic categories. The aggregated demographic information of many product adopters can be used to characterize both products and users in the form of distributions over different demographic categories. We further propose a graphbased method to iteratively update user- and product-related distributions more reliably in a heterogeneous user-product graph and incorporate them as features into the matrix factorization approach for product recommendation. Our experimental results on a large dataset crawled from JINGDONG, the largest B2C e-commerce website in China, show that our proposed framework outperforms a number of competitive baselines for product recommendation.
Resumo:
Case-based Reasoning's (CBR) origins were stimulated by a desire to understand how people remember information and are in turn reminded of information, and that subsequently it was recognized that people commonly solve problems by remembering how they solved similar problems in the past. Thus CBR became an appropriate way to find out the most suitable solution method for a new problem based on the old methods for the same or even similar problems. The research highlights how to use CBR to aid biologists in finding the best method to cryo preserve algae. The study found CBR could be used successfully to find the similarity percentage between the new algae and old cases in the case base. The prediction result showed approximately 93.75% accuracy, which proves the CBR system can offer appropriate recommendations for most situations. © 2011 IEEE.
Resumo:
An Automatic Vehicle Location (AVL) system is a computer-based vehicle tracking system that is capable of determining a vehicle's location in real time. As a major technology of the Advanced Public Transportation System (APTS), AVL systems have been widely deployed by transit agencies for purposes such as real-time operation monitoring, computer-aided dispatching, and arrival time prediction. AVL systems make a large amount of transit performance data available that are valuable for transit performance management and planning purposes. However, the difficulties of extracting useful information from the huge spatial-temporal database have hindered off-line applications of the AVL data. ^ In this study, a data mining process, including data integration, cluster analysis, and multiple regression, is proposed. The AVL-generated data are first integrated into a Geographic Information System (GIS) platform. The model-based cluster method is employed to investigate the spatial and temporal patterns of transit travel speeds, which may be easily translated into travel time. The transit speed variations along the route segments are identified. Transit service periods such as morning peak, mid-day, afternoon peak, and evening periods are determined based on analyses of transit travel speed variations for different times of day. The seasonal patterns of transit performance are investigated by using the analysis of variance (ANOVA). Travel speed models based on the clustered time-of-day intervals are developed using important factors identified as having significant effects on speed for different time-of-day periods. ^ It has been found that transit performance varied from different seasons and different time-of-day periods. The geographic location of a transit route segment also plays a role in the variation of the transit performance. The results of this research indicate that advanced data mining techniques have good potential in providing automated techniques of assisting transit agencies in service planning, scheduling, and operations control. ^
Resumo:
The nation's freeway systems are becoming increasingly congested. A major contribution to traffic congestion on freeways is due to traffic incidents. Traffic incidents are non-recurring events such as accidents or stranded vehicles that cause a temporary roadway capacity reduction, and they can account for as much as 60 percent of all traffic congestion on freeways. One major freeway incident management strategy involves diverting traffic to avoid incident locations by relaying timely information through Intelligent Transportation Systems (ITS) devices such as dynamic message signs or real-time traveler information systems. The decision to divert traffic depends foremost on the expected duration of an incident, which is difficult to predict. In addition, the duration of an incident is affected by many contributing factors. Determining and understanding these factors can help the process of identifying and developing better strategies to reduce incident durations and alleviate traffic congestion. A number of research studies have attempted to develop models to predict incident durations, yet with limited success. ^ This dissertation research attempts to improve on this previous effort by applying data mining techniques to a comprehensive incident database maintained by the District 4 ITS Office of the Florida Department of Transportation (FDOT). Two categories of incident duration prediction models were developed: "offline" models designed for use in the performance evaluation of incident management programs, and "online" models for real-time prediction of incident duration to aid in the decision making of traffic diversion in the event of an ongoing incident. Multiple data mining analysis techniques were applied and evaluated in the research. The multiple linear regression analysis and decision tree based method were applied to develop the offline models, and the rule-based method and a tree algorithm called M5P were used to develop the online models. ^ The results show that the models in general can achieve high prediction accuracy within acceptable time intervals of the actual durations. The research also identifies some new contributing factors that have not been examined in past studies. As part of the research effort, software code was developed to implement the models in the existing software system of District 4 FDOT for actual applications. ^