930 resultados para Microbial biocathode
Resumo:
Physical and biological properties of the water column of Florida Bay were examined at seven study sites over an eighteen month period. The results indicated seasonality in some parameters, but was not evident in others. The data displayed statistically significant (P < 0.05) differences between study sites indicating spatial variation. The presence of seagrass affected the overlying water column, especially with respect to the biological parameters: those areas overlying seagrass beds displayed statistically significantly higher values than those over sparsely covered or barren areas. During the period of the study, Florida Bay experienced a seagrass die-off event: microbial activity and numbers were statistically significantly higher over areas of dying seagrass than over healthy or dead areas. The results of this study pointed to phosphorus being the controlling, or limiting factor, for microbial activity in the water column of Florida Bay.
Resumo:
The study was carried out on the main plots of a large grassland biodiversity experiment (the Jena Experiment). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. We tracked soil microbial basal respiration (BR; µlO2/g dry soil/h) and biomass carbon (Cmic; µgC/g dry soil) over a time period of 12 years (2003-2014) and examined the role of plant diversity and plant functional group composition for the spatial and temporal stability (calculated as mean/SD) of soil microbial properties (basal respiration and biomass) in bulk-soil. Our results highlight the importance of plant functional group composition for the spatial and temporal stability of soil microbial properties, and hence for microbially-driven ecosystem processes, such as decomposition and element cycling, in temperate semi-natural grassland.
Resumo:
The ability of a previously PCB-enriched microbial culture from Venice Lagoon marine sediments to dechlorinate pentachlorophenol (PCP) and 2,3,5-trichlorophenol (2,3,5-TCP) was confirmed under anaerobic conditions in microcosms consisting of site water and sediment. Dechlorination activities against Aroclor 1254 PCB mixture were also confirmed as control. Pentachlorophenol was degraded to 2,4,6-TCP (75.92±0.85 mol%), 3,5-DCP (6.40±0.75 mol%), and phenol (15.40±0.87 mol%). From the distribution of the different dechlorination products accumulated in the PCP-spiked cultures over time, two dechlorination pathways for PCP were proposed: (i) PCP to 2,3,4,6-TeCP, then to 2,4,6-TCP through the removal of both meta double-flanked chlorine substituents (main pathway); (ii) alternately, PCP to 2,3,5,6-TeCP, 2,3,5-TCP, 3,5-DCP, then phenol, through the removal of the para double-flanked chlorine, followed by ortho single-flanked chlorines, and finally meta unflanked chlorines (minor pathway). Removal of meta double-flanked chlorines is thus preferred over all other substituents. 2,3,5-TCP, that completely lacks double-flanked chlorines, was degraded to 3,5-DCP through removal of the ortho single-flanked chlorine, with a 99.6% reduction in initial concentration of 2,3,5-TCP by week 14. 16S rRNA PCR-DGGE using Chloroflexi-specific primers revealed a different role of the two microorganisms VLD-1 and VLD-2, previously identified as dechlorinators in the Aroclor 1254 PCB-enriched community, in the dehalogenation of chlorophenols. VLD-1 was observed both in PCP- and TCP-dechlorinating communities, whereas VLD-2 only in TCP-dechlorinating communities. This indicates that VLD-1 and VLD-2 may both dechlorinate ortho single-flanked chlorines, but only VLD-1 is able to remove double-flanked meta or para chlorines.
Resumo:
Present theories of deep-sea community organization recognize the importance of small-scale biological disturbances, originated partly from the activities of epibenthic megafaunal organisms, in maintaining high benthic biodiversity in the deep sea. However, due to technical difficulties, in situ experimental studies to test hypotheses in the deep sea are lacking. The objective of the present study was to evaluate the potential of cages as tools for studying the importance of epibenthic megafauna for deep-sea benthic communities. Using the deep-diving Remotely Operated Vehicle (ROV) "VICTOR 6000", six experimental cages were deployed at the sea floor at 2500 m water depth and sampled after 2 years (2y) and 4 years (4y) for a variety of sediment parameters in order to test for caging artefacts. Photo and video footage from both experiments showed that the cages were efficient at excluding the targeted fauna. The cage also proved to be appropriate to deep-sea studies considering the fact that there was no fouling on the cages and no evidence of any organism establishing residence on or adjacent to it. Environmental changes inside the cages were dependent on the experimental period analysed. In the 4y experiment, chlorophyll a concentrations were higher in the uppermost centimeter of sediment inside cages whereas in the 2y experiment, it did not differ between inside and outside. Although the cages caused some changes to the sedimentary regime, they are relatively minor compared to similar studies in shallow water. The only parameter that was significantly higher under cages at both experiments was the concentration of phaeopigments. Since the epibenthic megafauna at our study site can potentially affect phytodetritus distribution and availability at the seafloor (e.g. via consumption, disaggregation and burial), we suggest that their exclusion was, at least in part, responsible for the increases in pigment concentrations. Cages might be suitable tools to study the long-term effects of disturbances caused by megafaunal organisms on the diversity and community structure of smaller-sized organisms in the deep sea, although further work employing partial cage controls, greater replication, and evaluating faunal components will be essential to unequivocally establish their utility.
Resumo:
Funded by Spanish National Research Council (CSIC). Grant Number: CGL2012-32747 MINECO. Grant Numbers: CGL2012-32747, CGL2011-30590-CO2-02 EU Commission. Grant Number: 244121 FP7
Resumo:
Date of acceptance: 09/07/2015
Resumo:
Date of acceptance: 09/07/2015
Resumo:
Copyright © 2015. Published by Elsevier Ltd. E.W. was supported by a PhD studentship from the Ministry of Science and Technology of Thailand and Mahasarakham University. T.W. received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland), that is funded by the Scottish Funding Council (grant reference HR09011). This research was also funded by the European Commission under the 7th Framework Programme for Research and Technological Development (FP7) of the European Union (grant agreement No. 311993 TARGETFISH).
Resumo:
M thanks the STFC for a PhD studentship and the NASA Astrobiology Institute for additional funding (NNAI13AA90A; Foundations of Complex Life, Evolution, Preservation and Detection on Earth and Beyond). Alison Wright, Roger Gibson and Edward Lynch are thanked for contributing samples. We thank three anonymous reviewers for their insightful comments.
Resumo:
Date of acceptance: 09/07/2015
Resumo:
Peer reviewed
Resumo:
Microorganisms mediate many biogeochemical processes critical to the functioning of ecosystems, which places them as an intermediate between environmental change and the resulting ecosystem response. Yet, we have an incomplete understanding of these relationships, how to predict them, and when they are influential. Understanding these dynamics will inform ecological principles developed for macroorganisms and aid expectations for microbial responses to new gradients. To address this research goal, I used two studies of environmental gradients and a literature synthesis.
With the gradient studies, I assessed microbial community composition in stream biofilms across a gradient of alkaline mine drainage. I used multivariate approaches to examine changes in the non-eukaryote microbial community composition of taxa (chapter 2) and functional genes (chapter 3). I found that stream biofilms at sites receiving alkaline mine drainage had distinct community composition and also differed in the composition of functional gene groups compared with unmined reference sites. Compositional shifts were not dominated by groups that could benefit from mining associated increases of terminal electron acceptors; two-thirds of responsive taxa and functional gene groups were negatively associated with mining. The majority of subsidies and stressors (nitrate, sulfate, conductivity) had no consistent relationships with taxa or gene abundances. However, methane metabolism genes were less abundant at mined sites and there was a strong, positive correlation between selenate reductase gene abundance and mining-associated selenium. These results highlighted the potential for indirect factors to also play an important role in explaining compositional shifts.
In the fourth chapter, I synthesized studies that use environmental perturbations to explore microbial community structure and microbial process connections. I examined nine journals (2009–13) and found that many qualifying papers (112 of 148) documented structure and process responses, but few (38 of 112 papers) reported statistically testing for a link. Of these tested links, 75% were significant. No particular approach for characterizing structure or processes was more likely to produce significant links. Process responses were detected earlier on average than responses in structure. Together, the findings suggested that few publications report statistically testing structure-process links; but when tested, links often occurred yet shared few commonalities in linked processes or structures and the techniques used for measuring them.
Although the research community has made progress, much work remains to ensure that the vast and growing wealth of microbial informatics data is translated into useful ecological information. In part, this challenge can be approached through using hypotheses to guide analyses, but also by being open to opportunities for hypothesis generation. The results from my dissertation work advise that it is important to carefully interpret shifts in community composition in relation to abiotic characteristics and recommend considering ecological, thermodynamic, and kinetic principles to understand the properties governing community responses to environmental perturbation.
Resumo:
Humanity is shaped by its relationships with microbes. From bacterial infections to the production of biofuels, industry and health often hinge on our control of microbial populations. Understanding the physiological and genetic basis of their behaviors is therefore of the highest importance. To this end I have investigated the genetic basis of plastic adhesion in Saccharomyces cerevisiae, the mechanistic and evolutionary dynamics of mixed species biofilms with Escherichia coli and S. cerevisiae, and the induction of filamentation in E. coli. Using a bulk segregant analysis on experimentally evolved populations, I detected 28 genes that are likely to mediate plastic adhesion in S. cerevisiae. With a variety of imaging and culture manipulation techniques, I found that particular strains of E. coli are capable of inducing flocculation and macroscopic biofilm formation via coaggregation with yeast. I also employed experimental evolution and microbial demography techniques to find that selection for mixed species biofilm association leads to lower fecundity in S. cerevisiae. Using culture manipulation and imaging techniques, I also found that E. coli are capable of inducing a filamentous phenotype with a secreted signal that has many of the qualities of a quorum sensing molecule.
Resumo:
The skin is home to trillions of microbes, many of which are recently implicated in immune system regulation and various health conditions (33). The skin is continuously exposed to the outside environment, inviting microbial transfer between human skin and the people, animals, and surfaces with which an individual comes into contact. Thus, the aim of this study is to assess how different environmental exposures influence skin microbe communities, as this can strengthen our understanding of how microbial variation relates to health outcomes. This study investigated the skin microbial communities of humans and domesticated cattle living in rural Madagascar. The V3 region of the 16S rRNA gene was sequenced from samples of zebu (the domesticated cattle of Madagascar), zebu owners, and non-zebu owners. Overall, human armpits were the least diverse sample site, while ankles were the most diverse. The diversity of zebu samples was significantly different from armpits, irrespective of zebu ownership (one-way ANOVA and Tukey’s HSD, p<0.05). However, zebu owner samples (from the armpit, ankle forearm, and hand) were more similar to other zebu owner samples than they were to zebu, yet no more similar to other zebu owner samples than they were to non-zebu owner samples (unweighted UniFrac distances, p<0.05). These data suggest a lack of a microbial signature shared by zebu owners and zebu, though further taxonomic analysis is required to explain the role of additional environmental variables in dictating the microbial communities of various samples sites. Understanding the magnitude and directionality of microbial sharing has implications for a breadth of microbe-related health outcomes, with the potential to explain mosquito host preference and mitigate the threats of vector-borne diseases.