974 resultados para Michelson interference
Resumo:
The neuronal-specific protein complexin I (CPX I) plays an important role in controlling the Ca(2+)-dependent neurotransmitter release. Since insulin exocytosis and neurotransmitter release rely on similar molecular mechanisms and that pancreatic beta-cells and neuronal cells share the expression of many restricted genes, we investigated the potential role of CPX I in insulin-secreting cells. We found that pancreatic islets and several insulin-secreting cell lines express high levels of CPX I. The beta-cell expression of CPX I is mediated by the presence of a neuron restrictive silencer element located within the regulatory region of the gene. This element bound the transcriptional repressor REST, which is found in most cell types with the exception of mature neuronal cells and beta-cells. Overexpression of CPX I or silencing of the CPX I gene (Cplx1) by RNA interference led to strong impairment in beta-cell secretion in response to nutrients such as glucose, leucine and KCl. This effect was detected both in the early and the sustained secretory phases but was much more pronounced in the early phase. We conclude that CPX I plays a critical role in beta-cells in the control of the stimulated-exocytosis of insulin.
Resumo:
Viral subversion of apoptosis regulation plays an important role in the outcome of host/virus interactions. Although human cytomegalovirus (HCMV) encodes several immediate early (IE) antiapoptotic proteins (IE1, IE2, vMIA and vICA), no proapoptotic HCMV protein has yet been identified. Here we show that US28, a functional IE HCMV-encoded chemokine receptor, which may be involved in both viral dissemination and immune evasion, constitutively induces apoptosis in several cell types. In contrast, none of nine human cellular chemokine receptors, belonging to three different subfamilies, induced any significant level of apoptosis. US28-induced cell death involves caspase 10 and caspase 8 activation, but does not depend on the engagement of cell-surface death receptors of the tumour necrosis factor receptor/CD95 family. US28 cell-death induction is prevented by coexpression of C-FLIP, a protein that inhibits Fas-associated death domain protein (FADD)-mediated activation of caspase 10 and caspase 8, and by coexpression of the HCMV antiapoptotic protein IE1. The use of US28 mutants indicated that the DRY sequence of its third transmenbrane domain, required for constitutive G-protein signalling, and the US28 intracellular terminal domain required for constitutive US28 endocytosis, are each partially required for cell-death induction. Thus, in HCMV-infected cells, US28 may function either as a chemokine receptor, a phospholipase C activator, or a proapoptotic factor, depending on expression levels of HCMV and/or cellular antiapoptotic proteins.
Resumo:
BACKGROUND: Eight human catalytic phosphoinositide 3-kinase (PI3K) isoforms exist which are subdivided into three classes. While class I isoforms have been well-studied in cancer, little is known about the functions of class II PI3Ks. MATERIALS AND METHODS: The expression pattern and functions of the class II PI3KC2β isoform were investigated in a panel of tumour samples and cell lines. RESULTS: Overexpression of PI3KC2β was found in subsets of tumours and cell lines from acute myeloid leukemia (AML), glioblastoma multiforme (GBM), medulloblastoma (MB), neuroblastoma (NB), and small cell lung cancer (SCLC). Specific pharmacological inhibitors of PI3KC2β or RNA interference impaired proliferation of a panel of human cancer cell lines and primary cultures. Inhibition of PI3KC2β also induced apoptosis and sensitised the cancer cells to chemotherapeutic agents. CONCLUSION: Together, these data show that PI3KC2β contributes to proliferation and survival in AML, brain tumours and neuroendocrine tumours, and may represent a novel target in these malignancies.
Resumo:
Deregulation of the ubiquitin/proteasome system has been implicated in the pathogenesis of many human diseases, including cancer. Ubiquitin-specific proteases (USP) are cysteine proteases involved in the deubiquitination of protein substrates. Functional connections between USP7 and essential viral proteins and oncogenic pathways, such as the p53/Mdm2 and phosphatidylinositol 3-kinase/protein kinase B networks, strongly suggest that the targeting of USP7 with small-molecule inhibitors may be useful for the treatment of cancers and viral diseases. Using high-throughput screening, we have discovered HBX 41,108, a small-molecule compound that inhibits USP7 deubiquitinating activity with an IC(50) in the submicromolar range. Kinetics data indicate an uncompetitive reversible inhibition mechanism. HBX 41,108 was shown to affect USP7-mediated p53 deubiquitination in vitro and in cells. As RNA interference-mediated USP7 silencing in cancer cells, HBX 41,108 treatment stabilized p53, activated the transcription of a p53 target gene without inducing genotoxic stress, and inhibited cancer cell growth. Finally, HBX 41,108 induced p53-dependent apoptosis as shown in p53 wild-type and null isogenic cancer cell lines. We thus report the identification of the first lead-like inhibitor against USP7, providing a structural basis for the development of new anticancer drugs.
Resumo:
We report magnetic and magneto-optical measurements of two Mn12 single-molecule magnet derivatives isolated in organic glasses. Field-dependent magnetic circular dichroism (MCD) intensity curves (hysteresis cycles) are found to be essentially identical to superconducting quantum interference device magnetization results and provide experimental evidence for the potential of the optical technique for magnetic characterization. Optical observation of magnetic tunneling has been achieved by studying the decay of the MCD signal at weak applied magnetic field
Resumo:
The objective of this research was to evaluate the parasitism behavior of Telenomus podisi Ashmead, Trissolcus basalis (Wollaston) e Trissolcus urichi Crawford (Hymenoptera: Scelionidae) on eggs of Nezara viridula L., Euschistus heros F., Piezodorus guildinii Westwood and Acrosternum aseadum Rolston (Heteroptera: Pentatomidae), in no choice and multiple choice experiments. For all parasitoid species, the results demonstrated the existence of a main host species that maximizes the reproductive success. The competitive interactions among the parasitoid species were investigated in experiments of sequential and simultaneous release of different combinations of parasitoid pairs on the hosts N. viridula, E. heros and A. aseadum. Exploitative competition was observed for egg batches at the genus level (Telenomus vs. Trissolcus) and interference competition at the species level (T. basalis vs. T. urichi). Trissolcus urichi was the most aggressive species, interfering with the parasitism of T. basalis. Generally, T. basalis showed an opportunistic behavior trying to parasitise eggs after T. urichi had abandoned the egg batch. The selection of parasitoid species for use in augmentative biological control programs should take into account the diversity of pentatomids present in soybean in addition to the interactions among the different species of parasitoids.
Resumo:
By expressing an array of pattern recognition receptors (PRRs), fibroblasts play an important role in stimulating and modulating the response of the innate immune system. The TLR3 ligand polyriboinosinic acid-polyribocytidylic acid, poly(I:C), a mimic of viral dsRNA, is a vaccine adjuvant candidate to activate professional antigen presenting cells (APCs). However, owing to its ligation with extracellular TLR3 on fibroblasts, subcutaneously administered poly(I:C) bears danger towards autoimmunity. It is thus in the interest of its clinical safety to deliver poly(I:C) in such a way that its activation of professional APCs is as efficacious as possible, whereas its interference with non-immune cells such as fibroblasts is controlled or even avoided. Complementary to our previous work with monocyte-derived dendritic cells (MoDCs), here we sought to control the delivery of poly(I:C) surface-assembled on microspheres to human foreskin fibroblasts (HFFs). Negatively charged polystyrene (PS) microspheres were equipped with a poly(ethylene glycol) (PEG) corona through electrostatically driven coatings with a series of polycationic poly(L-lysine)-graft-poly(ethylene glycol) copolymers, PLL-g-PEG, of varying grafting ratios g from 2.2 up to 22.7. Stable surface assembly of poly(I:C) was achieved by incubation of polymer-coated microspheres with aqueous poly(I:C) solutions. Notably, recognition of both surface-assembled and free poly(I:C) by extracellular TLR3 on HFFs halted their phagocytic activity. Ligation of surface-assembled poly(I:C) with extracellular TLR3 on HFFs could be controlled by tuning the grafting ratio g and thus the chain density of the PEG corona. When assembled on PLL-5.7-PEG-coated microspheres, poly(I:C) was blocked from triggering class I MHC molecule expression on HFFs. Secretion of interleukin (IL)-6 by HFFs after exposure to surface-assembled poly(I:C) was distinctly lower as compared to free poly(I:C). Overall, surface assembly of poly(I:C) may have potential to contribute to the clinical safety of this vaccine adjuvant candidate.
Resumo:
Patients with Ebstein's anomaly can present after childhood or adolescence with cyanosis, arrhythmias, severe right ventricular dysfunction and frequently with left ventricular dysfunction secondary to the prolonged cyanosis and to the right ventricular interference. At this point conventional repair is accompanied by elevated mortality and morbidity and poor functional results. We report our experience with three patients (8, 16 and 35 years of age) with Ebstein's anomaly, very dilated right atrium, severe tricuspid valve regurgitation (4/4), bi-directional shunt through an atrial septal defect and reduced left ventricular function (mean ejection fraction = 58%, mean shortening fraction = 25%). All underwent one and a half ventricular repair consisting of closure of the atrial septal defect, tricuspid repair with reduction of the atrialised portion of the right ventricle and end-to-side anastomosis of the superior vena cava to the right pulmonary artery. All patients survived, with a mean follow-up of 33 months. In all there was complete regression of the cyanosis and of the signs of heart failure. Postoperative echocardiography showed reduced degree of tricuspid regurgitation (2/4) and improvement of the left ventricular function (mean ejection fraction = 77%, mean shortening fraction = 40%). In patients with Ebstein's anomaly referred late for surgery with severely compromised right ventricular function or even with reduced biventricular function, the presence of a relatively hypoplastic and/or malfunctioning right ventricular chamber inadequate to sustain the entire systemic venous return but capable of managing part of the systemic venous return, permits a one and a half ventricular repair with good functional results.
Resumo:
A new technique capable of obtaining quantitative values of the rotation angle of the polarization vector by using holography is presented. This is a two-stage holographic process; during the recording stage a hologram of the object of interest is obtained. The reference beam is composed of two beams that form a small angle between them and keep their polarization states at right angles to each other. In the reconstruction stage of the hologram, two images from the hologram are obtained along two different angles. As a result of the interference between these two images, a set of parallel fringes is formed at the image plane. The fringe contrast on the reconstruction is related to the angle of the polarization vector of the light at each position on the image plane. Measurements of the rotation of the polarization angle of a fraction of a degree were obtained. The main application of this technique is in the study of transient phenomena, where single-shot measurements are the only means of obtaining reliable data.
Resumo:
Spherical carbon coated iron particles of nanometric diameter in the 510 nm range have been produced by arc discharge at near-atmospheric pressure conditions (using 58·10 4 Pa of He). The particles exhibit a crystalline dense iron core with an average diameter 7.4 ± 2.0 nm surrounded by a sealed carbon shell, shown by transmission electron microscopy (TEM), selected-area diffrac- tion (SAED), energy-dispersive X-ray analysis (STEM-EDX) and electron energy loss spectroscopy (EELS). The SAED, EDX and EELS results indicate a lack of traces of core oxidized phases showing an efficient protection role of the carbon shell. The magnetic properties of the nanoparticles have been investigated in the 5300 K temperature range using a superconducting quantum interference device (SQUID). The results reveal a superparamagnetic behaviour with an average monodomain diameter of 7.6 nm of the nanoparticles. The zero field cooled and field cooled (ZFC-FC)magnetization curves show a blocking temperature (TB)at room temperature very suitable for biomedical applications (drug delivery, magnetic resonance imaging MRI, hyperthermia).
Resumo:
Capillary electrophoresis has drawn considerable attention in the past few years, particularly in the field of chiral separations because of its high separation efficiency. However, its routine use in therapeutic drug monitoring is hampered by its low sensitivity due to a short optical path. We have developed a capillary zone electrophoresis (CZE) method using 2mM of hydroxypropyl-β-cyclodextrin as a chiral selector, which allows base-to-base separation of the enantiomers of mianserin (MIA), desmethylmianserin (DMIA), and 8-hydroxymianserin (OHMIA). Through the use of an on-column sample concentration step after liquid-liquid extraction from plasma and through the presence of an internal standard, the quantitation limits were found to be 5 ng/mL for each enantiomer of MIA and DMIA and 15 ng/mL for each enantiomer of OHMIA. To our knowledge, this is the first published CE method that allows its use for therapeutic monitoring of antidepressants due to its sensitivity down to the low nanogram range. The variability of the assays, as assessed by the coefficients of variation (CV) measured at two concentrations for each substance, ranged from 2 to 14% for the intraday (eight replicates) and from 5 to 14% for the interday (eight replicates) experiments. The deviations from the theoretical concentrations, which represent the accuracy of the method, were all within 12.5%. A linear response was obtained for all compounds within the range of concentrations used for the calibration curves (10-150 ng/mL for each enantiomer of MIA and DMIA and 20-300 ng/mL for each enantiomer of OHMIA). Good correlations were calculated between [(R) + (S)]-MIA and DMIA concentrations measured in plasma samples of 20 patients by a nonchiral gas chromatography method and CZE, and between the (R)- and (S)-concentrations of MIA and DMIA measured in plasma samples of 37 patients by a previously described chiral high-performance liquid chromatography method and CZE. Finally, no interference was noted from more than 20 other psychotropic drugs. Thus, this method, which is both sensitive and selective, can be routinely used for therapeutic monitoring of the enantiomers of MIA and its metabolites. It could be very useful due to the demonstrated interindividual variability of the stereoselective metabolism of MIA.
Resumo:
The serotonin-2A receptor (5-HT(2A)R) has been implicated in the pathogenesis of schizophrenia and related inhibitory gating and behavioral inhibition deficits of schizophrenia patients. The hallucinogen psilocybin disrupts automatic forms of sensorimotor gating and response inhibition in humans, but it is unclear so far whether the 5-HT(2A)R or 5-HT(1A)R agonist properties of its bioactive metabolite psilocin account for these effects. Thus, we investigated whether psilocybin-induced deficits in automatic and controlled inhibition in healthy humans could be attenuated by the 5-HT(2A/2C)R antagonist ketanserin. A total of 16 healthy participants received placebo, ketanserin (40 mg p.o.), psilocybin (260 μg/kg p.o.), or psilocybin plus ketanserin in a double-blind, randomized, and counterbalanced order. Sensorimotor gating was measured by prepulse inhibition (PPI) of the acoustic startle response. The effects on psychopathological core dimensions and behavioral inhibition were assessed by the altered states of consciousness questionnaire (5D-ASC), and the Color-Word Stroop Test. Psilocybin decreased PPI at short lead intervals (30 ms), increased all 5D-ASC scores, and selectively increased errors in the interference condition of the Stroop Test. Stroop interference and Stroop effect of the response latencies were increased under psilocybin as well. Psilocybin-induced alterations were attenuated by ketanserin pretreatment, whereas ketanserin alone had no significant effects. These findings suggest that the disrupting effects of psilocybin on automatic and controlled inhibition processes are attributable to 5-HT(2A)R stimulation. Sensorimotor gating and attentional control deficits of schizophrenia patients might be due to changes within the 5-HT(2A)R system.
Resumo:
Understanding the oxidative reactivity of nanoparticles (NPs; <100 nm) could substantially contribute to explaining their toxicity. We attempted to refine the use of 2′7-dichlorodihydrofluorescein (DCFH) to characterize NP generation of reactive oxygen species (ROS). Several fluorescent probes have been applied to testing oxidative reactivity, but despite DCFH being one of the most popular for the detection of ROS, when it has been applied to NPs there have been an unexplainably wide variability in results. Without a uniform methodology, validating even robust results is impossible. This study, therefore, identified sources of conflicting results and investigated ways of reducing occurrence of artificial results. Existing techniques were tested and combined (using their most desirable features) to form a more reliable method for the measurement of NP reactivity in aqueous dispersions. We also investigated suitable sample ranges necessary to determine generation of ROS. Specifically, ultrafiltration and time-resolved scan absorbance spectra were used to study possible optical interference when using high sample concentrations. Robust results were achieved at a 5 µM DCFH working solution with 0.5 unit/mL horseradish peroxidase (HRP) dissolved in ethanol. Sonication in DCFH-HRP working solution provided more stable data with a relatively clean background. Optimal particle concentration depends on the type of NP and in general was in the µg/mL range. Major reasons for previously reported conflicting results due to interference were different experimental approaches and NP sample concentrations. The protocol presented here could form the basis of a standardized method for applying DCFH to detect generation of ROS by NPs.
Resumo:
The biological consequences of constitutive fibroblast growth factor-4 (fgf4) expression have been analysed during anterior CNS development of mouse chimeric embryos. Severe mutant embryos exhibit exencephaly, absence of eye development and anomalous differentiation of neuropithelium. These embryos also show ectopic limb buds resembling the early phases of limb development. Because our results show that anterior CNS in those chimeric embrios does not express shh ectopically, we suggest that malformations may be due to interference between the ectopic expression of fgf4 in the cephalic area and the receptors for the members of the FGF family that regulate brain and eye development, namely fgf8. If this is correct, the results indirectly suport the crucial role of fgf8 in patterning the anterior CNS.
Resumo:
The ability of pollutants to affect human health is a major concern, justified by the wide demonstration that reproductive functions are altered by endocrine disrupting chemicals. The definition of endocrine disruption is today extended to broader endocrine regulations, and includes activation of metabolic sensors, such as the peroxisome proliferator-activated receptors (PPARs). Toxicology approaches have demonstrated that phthalate plasticizers can directly influence PPAR activity. What is now missing is a detailed molecular understanding of the fundamental basis of endocrine disrupting chemical interference with PPAR signaling. We thus performed structural and functional analyses that demonstrate how monoethyl-hexyl-phthalate (MEHP) directly activates PPARgamma and promotes adipogenesis, albeit to a lower extent than the full agonist rosiglitazone. Importantly, we demonstrate that MEHP induces a selective activation of different PPARgamma target genes. Chromatin immunoprecipitation and fluorescence microscopy in living cells reveal that this selective activity correlates with the recruitment of a specific subset of PPARgamma coregulators that includes Med1 and PGC-1alpha, but not p300 and SRC-1. These results highlight some key mechanisms in metabolic disruption but are also instrumental in the context of selective PPAR modulation, a promising field for new therapeutic development based on PPAR modulation.