902 resultados para Metal Surface Hardening
Resumo:
Energy storage technologies are crucial for efficient utilization of electricity. Supercapacitors and rechargeable batteries are of currently available energy storage systems. Transition metal oxides, hydroxides, and phosphates are the most intensely investigated electrode materials for supercapacitors and rechargeable batteries due to their high theoretical charge storage capacities resulted from reversible electrochemical reactions. Their insulating nature, however, causes sluggish electron transport kinetics within these electrode materials, hindering them from reaching the theoretical maximum. The conductivity of these transition metal based-electrode materials can be improved through three main approaches; nanostructuring, chemical substitution, and introducing carbon matrices. These approaches often lead to unique electrochemical properties when combined and balanced.
Ethanol-mediated solvothermal synthesis we developed is found to be highly effective for controlling size and morphology of transition metal-based electrode materials for both pseudocapacitors and batteries. The morphology and the degree of crystallinity of nickel hydroxide are systematically changed by adding various amounts glucose to the solvothermal synthesis. Nickel hydroxide produced in this manner exhibited increased pseudocapacitance, which is partially attributed to the increased surface area. Interestingly, this morphology effect on cobalt doped-nickel hydroxide is found to be more effective at low cobalt contents than at high cobalt contents in terms of improving the electrochemical performance.
Moreover, a thin layer of densely packed nickel oxide flakes on carbon paper substrate was successfully prepared via the glucose-assisted solvothermal synthesis, resulting in the improved electrode conductivity. When reduced graphene oxide was used for conductive coating on as-prepared nickel oxide electrode, the electrode conductivity was only slightly improved. This finding reveals that the influence of reduced graphene oxide coating, increasing the electrode conductivity, is not that obvious when the electrode is already highly conductive to begin with.
We were able to successfully control the interlayer spacing and reduce the particle size of layered titanium hydrogeno phosphate material using our ethanol-mediated solvothermal reaction. In layered structure, interlayer spacing is the key parameter for fast ion diffusion kinetics. The nanosized layered structure prepared via our method, however, exhibited high sodium-ion storage capacity regardless of the interlayer spacing, implying that interlayer space may not be the primary factor for sodium-ion diffusion in nanostructured materials, where many interstitials are available for sodium-ion diffusion.
Our ethanol-mediated solvothermal reaction was also effective for synthesis of NaTi2(PO4)3 nanoparticles with uniform size and morphology, well connected by a carbon nanotube network. This composite electrode exhibited high capacity, which is comparable to that in aqueous electrolyte, probably due to the uniform morphology and size where the preferable surface for sodium-ion diffusion is always available in all individual particles.
Fundamental understandings of the relationship between electrode microstructures and electrochemical properties discussed in this dissertation will be important to design high performance energy storage system applications.
Resumo:
The rapid development of nanotechnology and wider applications of engineered nanomaterials (ENMs) in the last few decades have generated concerns regarding their environmental and health risks. After release into the environment, ENMs undergo aggregation, transformation, and, for metal-based nanomaterials, dissolution processes, which together determine their fate, bioavailability and toxicity to living organisms in the ecosystems. The rates of these processes are dependent on nanomaterial characteristics as well as complex environmental factors, including natural organic matter (NOM). As a ubiquitous component of aquatic systems, NOM plays a key role in the aggregation, dissolution and transformation of metal-based nanomaterials and colloids in aquatic environments.
The goal of this dissertation work is to investigate how NOM fractions with different chemical and molecular properties affect the dissolution kinetics of metal oxide ENMs, such as zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs), and consequently their bioavailability to aquatic vertebrate, with Gulf killifish (Fundulus grandis) embryos as model organisms.
ZnO NPs are known to dissolve at relatively fast rates, and the rate of dissolution is influenced by water chemistry, including the presence of Zn-chelating ligands. A challenge, however, remains in quantifying the dissolution of ZnO NPs, particularly for time scales that are short enough to determine rates. This dissertation assessed the application of anodic stripping voltammetry (ASV) with a hanging mercury drop electrode to directly measure the concentration of dissolved Zn in ZnO NP suspensions, without separation of the ZnO NPs from the aqueous phase. Dissolved zinc concentration measured by ASV ([Zn]ASV) was compared with that measured by inductively coupled plasma mass spectrometry (ICP-MS) after ultracentrifugation ([Zn]ICP-MS), for four types of ZnO NPs with different coatings and primary particle diameters. For small ZnO NPs (4-5 nm), [Zn]ASV was 20% higher than [Zn]ICP-MS, suggesting that these small NPs contributed to the voltammetric measurement. For larger ZnO NPs (approximately 20 nm), [Zn]ASV was (79±19)% of [Zn]ICP-MS, despite the high concentrations of ZnO NPs in suspension, suggesting that ASV can be used to accurately measure the dissolution kinetics of ZnO NPs of this primary particle size.
Using the ASV technique to directly measure dissolved zinc concentration, we examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg-C L-1) for Suwannee River humic acid (SRHA), Suwannee River fulvic acid and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. NOM isolates with higher SUVA were also more effective at enhancing the colloidal stability of the NPs; however, the NOM-promoted dissolution was likely due to enhanced interactions between surface metal ions and NOM rather than smaller aggregate size.
Based on the above results, we designed experiments to quantitatively link the dissolution kinetics and bioavailability of CuO NPs to Gulf killifish embryos under the influence of NOM. The CuO NPs dissolved to varying degrees and at different rates in diluted 5‰ artificial seawater buffered to different pH (6.3-7.5), with or without selected NOM isolates at various concentrations (0.1-10 mg-C L-1). NOM isolates with higher SUVA and aromatic carbon content (such as SRHA) were more effective at promoting the dissolution of CuO NPs, as with ZnO NPs, especially at higher NOM concentrations. On the other hand, the presence of NOM decreased the bioavailability of dissolved Cu ions, with the uptake rate constant negatively correlated to dissolved organic carbon concentration ([DOC]) multiplied by SUVA, a combined parameter indicative of aromatic carbon concentration in the media. When the embryos were exposed to CuO NP suspension, changes in their Cu content were due to the uptake of both dissolved Cu ions and nanoparticulate CuO. The uptake rate constant of nanoparticulate CuO was also negatively correlated to [DOC]×SUVA, in a fashion roughly proportional to changes in dissolved Cu uptake rate constant. Thus, the ratio of uptake rate constants from dissolved Cu and nanoparticulate CuO (ranging from 12 to 22, on average 17±4) were insensitive to NOM type or concentration. Instead, the relative contributions of these two Cu forms were largely determined by the percentage of CuO NP that was dissolved.
Overall, this dissertation elucidated the important role that dissolved NOM plays in affecting the environmental fate and bioavailability of soluble metal-based nanomaterials. This dissertation work identified aromatic carbon content and its indicator SUVA as key NOM properties that influence the dissolution, aggregation and biouptake kinetics of metal oxide NPs and highlighted dissolution rate as a useful functional assay for assessing the relative contributions of dissolved and nanoparticulate forms to metal bioavailability. Findings of this dissertation work will be helpful for predicting the environmental risks of engineered nanomaterials.
Resumo:
Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient’s medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method.
Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three approaches were applied in this research for dosimetric evaluation on CT images with severe metal artefacts. The first part of the research used a water phantom with four iodine syringes. Two sets of plans, multi-arc plans and single-arc plans, using the Volumetric Modulated Arc therapy (VMAT) technique were designed to avoid or minimize influences from high-density objects. The second part of the research used projection-based MAR Algorithm and the Dual-Energy Method. Calculated Doses (Mean, Minimum, and Maximum Doses) to the planning treatment volume (PTV) were compared and homogeneity index (HI) calculated.
Results: (1) Without the GSI-based MAR application, a percent error between mean dose and the absolute dose ranging from 3.4-5.7% per fraction was observed. In contrast, the error was decreased to a range of 0.09-2.3% per fraction with the GSI-based MAR algorithm. There was a percent difference ranging from 1.7-4.2% per fraction between with and without using the GSI-based MAR algorithm. (2) A range of 0.1-3.2% difference was observed for the maximum dose values, 1.5-10.4% for minimum dose difference, and 1.4-1.7% difference on the mean doses. Homogeneity indexes (HI) ranging from 0.068-0.065 for dual-energy method and 0.063-0.141 with projection-based MAR algorithm were also calculated.
Conclusion: (1) Percent error without using the GSI-based MAR algorithm may deviate as high as 5.7%. This error invalidates the goal of Radiation Therapy to provide a more precise treatment. Thus, GSI-based MAR algorithm was desirable due to its better dose calculation accuracy. (2) Based on direct numerical observation, there was no apparent deviation between the mean doses of different techniques but deviation was evident on the maximum and minimum doses. The HI for the dual-energy method almost achieved the desirable null values. In conclusion, the Dual-Energy method gave better dose calculation accuracy to the planning treatment volume (PTV) for images with metal artefacts than with or without GE MAR Algorithm.
Resumo:
The development of economical heterogeneous catalysts for the activation of methane is a major challenge for the chemical industry. Screening potential candidates becomes more feasible using rational catalyst design to understand the activity of potential catalysts for CH4 activation. The focus of the present paper is the use of density functional theory to examine and elucidate the properties of doped CeO2. We dope with Cu and Zn transition metals having variable oxidation state (Cu), and a single oxidation state (Zn), and study the activation of methane. Zn is a divalent dopant and Cu can have a +1 or +2 oxidation state. Both Cu and Zn dopants have an oxidation state of +2 after incorporation into the CeO2 (111) surface; however a Hubbard +U correction (+U = 7) on the Cu 3d states is required to maintain this oxidation state when the surface interacts with adsorbed species. Dissociation of methane is found to occur locally at the dopant cations, and is thermodynamically and kinetically more favorable on Zn-doped CeO2 than Cu-doped CeO2. The origins of this lie with the Zn(II) dopant moving towards a square pyramidal geometry in the sub surface layer which facilitates the formation of two-coordinated surface oxygen atoms, that are more beneficial for methane activation on a reducible oxide surface. These findings can aid in rational experimental catalyst design for further exploration in methane activation processes.
Resumo:
Benzodiazepines are among the most prescribed compounds for anti-anxiety and are present in many toxicological screens. These drugs are also prominent in the commission of drug facilitated sexual assaults due their effects on the central nervous system. Due to their potency, a low dose of these compounds is often administered to victims; therefore, the target detection limit for these compounds in biological samples is 10 ng/mL. Currently these compounds are predominantly analyzed using immunoassay techniques; however more specific screening methods are needed. The goal of this dissertation was to develop a rapid, specific screening technique for benzodiazepines in urine samples utilizing surface-enhanced Raman spectroscopy (SERS), which has previously been shown be capable of to detect trace quantities of pharmaceutical compounds in aqueous solutions. Surface enhanced Raman spectroscopy has the advantage of overcoming the low sensitivity and fluorescence effects seen with conventional Raman spectroscopy. The spectra are obtained by applying an analyte onto a SERS-active metal substrate such as colloidal metal particles. SERS signals can be further increased with the addition of aggregate solutions. These agents cause the nanoparticles to amass and form hot-spots which increase the signal intensity. In this work, the colloidal particles are spherical gold nanoparticles in aqueous solution with an average size of approximately 30 nm. The optimum aggregating agent for the detection of benzodiazepines was determined to be 16.7 mM MgCl2, providing the highest signal intensities at the lowest drug concentrations with limits of detection between 0.5 and 127 ng/mL. A supported liquid extraction technique was utilized as a rapid clean extraction for benzodiazepines from urine at a pH of 5.0, allowing for clean extraction with limits of detection between 6 and 640 ng/mL. It was shown that at this pH other drugs that are prevalent in urine samples can be removed providing the selective detection of the benzodiazepine of interest. This technique has been shown to provide rapid (less than twenty minutes), sensitive, and specific detection of benzodiazepines at low concentrations in urine. It provides the forensic community with a sensitive and specific screening technique for the detection of benzodiazepines in drug facilitated assault cases.
Resumo:
The mineralogy and geochemistry of a suite of nine manganese nodules from the South Atlantic have been determined. The Ce/La ratios of the nodules were investigated to see if they could be used as redox indicators to trace the oxygen content of the ambient water mass and the flow path of the Antarctic Bottom Water as has previously been successfully carried out in the Pacific Ocean. The Ce/La ratios of the nodules decrease in the sequence Lazarev Sea, Weddell Sea (10.4 and 9.7)>East Georgia Basin (6.5 and 7.1)>Argentine Basin (5.0), but then increase in the Brazil Basin (6.2) and Angola Basin (9.8 and 15.1). A further decrease was observed in the Cape Basin (7.6). An extremely high Ce/La ratio of 24.4 had already been determined for nodules sampled north of the Nares Abyssal Plain in the western North Atlantic. These data reflect the more complicated pattern of bottom water flow in the South Atlantic than in the South Pacific. The penetration of more oxygenated North Atlantic Deep Water into the South Atlantic accounts for the higher Ce/La ratios in the nodules from the Angola and Brazil basins. Based on this study, the flow path of the Antarctic Bottom Water could only be traced as far north as the Argentine Basin. The unique geochemistry of nodules from the central Angola Basin (high Mn/Fe and Ce/La ratios, high contents of Ni, Cu, Zn and Mo) appears to be a function of the nature of the overlying water mass and of the multiple diagenetic sources of metals to the nodules.
Resumo:
Boron-doped diamond is a promising electrode material for a number of applications providing efficient carrier transport, a high stability of the electrolytic performance with time, a possibility for dye-sensitizing with photosensitive molecules, etc. It can be functionalized with electron donor molecules, like phthalocyanines or porphyrins, for the development of light energy conversion systems. For effective attachment of such molecules, the diamond surface has to be modified by plasma- or photo-chemical processes in order to achieve a desired surface termination. In the present work, the surface modifications of undoped and boron-doped nanocrystalline diamond (NCD) films and their functionalization with various phthalocyanines (Pcs) were investigated. The NCD films have been prepared by hot filament chemical vapor deposition (HFCVD) on silicon substrates and were thereafter subjected to modifications with O2 or NH3 plasmas or UV/O3 treatments for exchange of the H-termination of the as-grown surface. The effectiveness of the modifications and their stability with time during storage under different ambients were studied by contact angle measurements and X-ray photoelectron spectroscopy (XPS). Furthermore, the surface roughness after the modifications was investigated with atomic force microscopy (AFM) and compared to that of as-grown samples in order to establish the appearance of etching of the surface during the treatment. The as-grown and the modified NCD surfaces were exposed to phthalocyanines with different metal centers (Ti, Cu, Mn) or with different side chains. The results of the Pc grafting were investigated by XPS and Raman spectroscopy. XPS revealed the presence of nitrogen stemming from the Pc molecules and traces of the respective metal atoms with ratios close to those in the applied Pc. In a next step Raman spectra of Ti-Pc, Cu-Pc and Mn-Pc were obtained with two different excitation wavelengths (488 and 785 nm) from droplet samples on Si after evaporation of the solvent in order to establish their Raman fingerprints. The major differences in the spectra were assigned to the effect of the size of the metal ion on the structure of the phthalocyanine ring. The spectra obtained were used as references for the Raman spectra of NCD surfaces grafted with Pc. Finally, selected boron doped NCD samples were used after their surface modification and functionalization with Pc for the preparation of electrodes which were tested in a photoelectrochemical cell with a Pt counter electrode and an Ag/AgCl reference electrode. The light sources and electrolytes were varied to establish their influence on the performance of the dye-sensitized diamond electrodes. Cyclic voltammetry measurements revealed broad electrochemical potential window and high stability of the electrodes after several cycles. The open circuit potential (OCP) measurements performed in dark and after illumination showed fast responses of the electrodes to the illumination resulting in photocurrent generation.
Resumo:
To differentiate between the roles of surface topography and chemical composition on influencing friction and transfer in sliding contact, a series of tests were performed in situ in an SEM. The initial sliding during metal forming was investigated, using an aluminum tip representing the work material, put into sliding contact with a polished flat tool material. Both DLC-coated and uncoated tool steel was used. By varying the final polishing step of the tool material, different surface topographies were obtained. The study demonstrates the strong influence from nano topography of an unpolished DLC coated surface on both coefficient of friction and material transfer. The influence of tool surface chemistry is also discussed.
Resumo:
In the past, many papers have been presented which show that the coating of cutting tools often yields decreased wear rates and reduced coefficients of friction. Although different theories are proposed, covering areas such as hardness theory, diffusion barrier theory, thermal barrier theory, and reduced friction theory, most have not dealt with the question of how and why the coating of tool substrates with hard materials such as Titanium Nitride (TiN), Titanium Carbide (TiC) and Aluminium Oxide (Al203) transforms the performance and life of cutting tools. This project discusses the complex interrelationship that encompasses the thermal barrier function and the relatively low sliding friction coefficient of TiN on an undulating tool surface, and presents the result of an investigation into the cutting characteristics and performance of EDMed surface-modified carbide cutting tool inserts. The tool inserts were coated with TiN by the physical vapour deposition (PVD) method. PVD coating is also known as Ion-plating which is the general term of the coating method in which the film is created by attracting ionized metal vapour in this the metal was Titanium and ionized gas onto negatively biased substrate surface. Coating by PVD was chosen because it is done at a temperature of not more than 5000C whereas chemical Vapour Deposition CVD process is done at very high temperature of about 8500C and in two stages of heating up the substrates. The high temperatures involved in CVD affects the strength of the (tool) substrates. In this study, comparative cutting tests using TiN-coated control specimens with no EDM surface structures and TiN-coated EDMed tools with a crater-like surface topography were carried out on mild steel grade EN-3. Various cutting speeds were investigated, up to an increase of 40% of the tool manufacturer’s recommended speed. Fifteen minutes of cutting were carried out for each insert at the speeds investigated. Conventional tool inserts normally have a tool life of approximately 15 minutes of cutting. After every five cuts (passes) microscopic pictures of the tool wear profiles were taken, in order to monitor the progressive wear on the rake face and on the flank of the insert. The power load was monitored for each cut taken using an on-board meter on the CNC machine to establish the amount of power needed for each stage of operation. The spindle drive for the machine is an 11 KW/hr motor. Results obtained confirmed the advantages of cutting at all speeds investigated using EDMed coated inserts, in terms of reduced tool wear and low power loads. Moreover, the surface finish on the workpiece was consistently better for the EDMed inserts. The thesis discusses the relevance of the finite element method in the analysis of metal cutting processes, so that metal machinists can design, manufacture and deliver goods (tools) to the market quickly and on time without going through the hassle of trial and error approach for new products. Improvements in manufacturing technologies require better knowledge of modelling metal cutting processes. Technically the use of computational models has a great value in reducing or even eliminating the number of experiments traditionally used for tool design, process selection, machinability evaluation, and chip breakage investigations. In this work, much interest in theoretical and experimental investigations of metal machining were given special attention. Finite element analysis (FEA) was given priority in this study to predict tool wear and coating deformations during machining. Particular attention was devoted to the complicated mechanisms usually associated with metal cutting, such as interfacial friction; heat generated due to friction and severe strain in the cutting region, and high strain rates. It is therefore concluded that Roughened contact surface comprising of peaks and valleys coated with hard materials (TiN) provide wear-resisting properties as the coatings get entrapped in the valleys and help reduce friction at chip-tool interface. The contributions to knowledge: a. Relates to a wear-resisting surface structure for application in contact surfaces and structures in metal cutting and forming tools with ability to give wear-resisting surface profile. b. Provide technique for designing tool with roughened surface comprising of peaks and valleys covered in conformal coating with a material such as TiN, TiC etc which is wear-resisting structure with surface roughness profile compose of valleys which entrap residual coating material during wear thereby enabling the entrapped coating material to give improved wear resistance. c. Provide knowledge for increased tool life through wear resistance, hardness and chemical stability at high temperatures because of reduced friction at the tool-chip and work-tool interfaces due to tool coating, which leads to reduced heat generation at the cutting zones. d. Establishes that Undulating surface topographies on cutting tips tend to hold coating materials longer in the valleys, thus giving enhanced protection to the tool and the tool can cut faster by 40% and last 60% longer than conventional tools on the markets today.
Resumo:
The main objective of this work is the development of a hardmetal components (WC-6%Co) recovery method by thermal deposition process. The thermal deposition technique used was HVOF (high velocity oxygen-fuel). The HVOF enables depositions of thick coatings (100-500 µm) with low porosity levels, high hardness and excellent adhesion. Before deposition, hardmetal samples with different geometries (plates and cylinders) were finished in order to have different roughness. The influence of these parameters in adhesion was studied. After this step, different re-sintering temperatures were used, in order to determine which one allows to obtain the maxima densification, elements distribution and metallurgical bonding. The re-sintering promotes the densification of the coating, with an increase of its hardness and metallurgical bonding formation. The inclusion of an intermetallic layer was tested along with different layer parameters. In liquid phase sintering (1383 and 1455 ºC) a complete densification of the coating occurred, while a bonding between the substrate and the coating only partially happened. The results of SEM/EDS show low levels of porosity and a complete and uniform distribution of the elements of the alloy. The cylindrical samples without intermetallic layer showed the lowest level of porosity and best metallurgical bonding. When the substrate surface was polished (Ra = 0.05 mm) lower levels of porosity and greater metallurgical bonding were found for both geometries. Taking into account the results obtained in this study, we can conclude that the implementation of this process is appropriate for cylindrical components with a polished surface. In these components the intermetallic layer is unnecessary and punctual defects like pores can be repaired with this process.
Resumo:
The engineering of liquid behavior on surfaces is important for infrastructure, transportation, manufacturing, and sensing. Surfaces can be rendered superhydrophobic by microstructuring, and superhydrophobic devices could lead to practical corrosion inhibition, self-cleaning, fluid flow control, and surface drag reduction. To more fully understand how liquid interacts with microstructured surfaces, this dissertation introduces a direct method for determining droplet solid-liquid-vapor interfacial geometry on microstructured surfaces. The technique performs metrology on molten metal droplets deposited onto microstructured surfaces and then frozen. Unlike other techniques, this visualization technique can be used on large areas of curved and opaque microstructured surfaces to determine contact line. This dissertation also presents measurements and models for how curvature and flexing of microstructured polymers affects hydrophobicity. Increasing curvature of microstructured surfaces leads to decreased slide angle for liquid droplets suspended on the surface asperities. For a surface with regularly spaced asperities, as curvature becomes more positive, droplets suspended on the tops of asperities are suspended on fewer asperities. Curvature affects superhydrophobicity because microscopic curvature changes solid-liquid interaction, pitch is altered, and curvature changes the shape of the three phase contact line. This dissertation presents a model of droplet interactions with curved microstructured surfaces that can be used to design microstructure geometries that maintain the suspension of a droplet when curved surfaces are covered with microstructured polymers. Controlling droplet dynamics could improve microfluidic devices and the shedding of liquids from expensive equipment, preventing corrosion and detrimental performance. This dissertation demonstrates redirection of dynamic droplet spray with anisotropic microstructures. Superhydrophobic microstructured surfaces can be economically fabricated using metal embossing masters, so this dissertation describes casting-based microfabrication of metal microstructures and nanostructures. Low melting temperature metal was cast into flexible silicone molds which were themselves cast from microfabricated silicon templates. The flexibility of the silicone mold permits casting of curved surfaces, which this dissertation demonstrates by fabricating a cylindrical metal roller with microstructures. The metal microstructures can be in turn used as a reusable molding tool. This dissertation also describes an industrial investment casting process to produce aluminum molds having integrated microstructures. Unlike conventional micromolding tools, the aluminum mold was large and had complex curved surfaces. The aluminum was cast into curved microstructured ceramic molds which were themselves cast from curved microstructured rubber. Many structures were successfully cast into the aluminum with excellent replication fidelity, including circular, square, and triangular holes. This dissertation demonstrates molding of large, curved surfaces having surface microstructures using the aluminum mold. This work contributes a more full understanding of the phenomenon of superhydrophobicity and techniques for the economic fabrication of superhydrophobic microstructures.
Resumo:
Passive sampling devices (PS) are widely used for pollutant monitoring in water, but estimation of measurement uncertainties by PS has seldom been undertaken. The aim of this work was to identify key parameters governing PS measurements of metals and their dispersion. We report the results of an in situ intercomparison exercise on diffusive gradient in thin films (DGT) in surface waters. Interlaboratory uncertainties of time-weighted average (TWA) concentrations were satisfactory (from 28% to 112%) given the number of participating laboratories (10) and ultra-trace metal concentrations involved. Data dispersion of TWA concentrations was mainly explained by uncertainties generated during DGT handling and analytical procedure steps. We highlight that DGT handling is critical for metals such as Cd, Cr and Zn, implying that DGT assembly/dismantling should be performed in very clean conditions. Using a unique dataset, we demonstrated that DGT markedly lowered the LOQ in comparison to spot sampling and stressed the need for accurate data calculation.
Resumo:
Open-cell metal foams show promise as an emerging novel material for heat exchanger applications. The high surface-area-to-volume ratio suggests increased compactness and decrease in weight of heat exchanger designs. However, the metal foam structure appears conducive to condensate retention, which would degenerate heat transfer performance. This research investigates the condensate retention behavior of aluminum open-cell metal foams through the use of static dip tests and geometrical classification via X-ray Micro-Computed Tomography. Aluminum open-cell metal foam samples of 5, 10, 20, and 40 pores per inch (PPI), all having a void fraction greater than 90%, were included in this investigation. In order to model the condensate retention behavior of metal foams, a clearer understanding of the geometry was required. After exploring the ideal geometries presented in the open literature, X-ray Micro-Computed Tomography was employed to classify the actual geometry of the metal foam samples. The images obtained were analyzed using specialized software from which geometric information including strut length and pore shapes were extracted. The results discerned a high variability in ligament length, as well as features supporting the ideal geometry known as the Weaire-Phelan unit cell. The static dip tests consisted of submerging the metal foam samples in a liquid, then allowing gravity-induced drainage until steady-state was reached and the liquid remaining in the metal foam sample was measured. Three different liquids, water, ethylene glycol, and 91% isopropyl alcohol, were employed. The behaviors of untreated samples were compared to samples subjected to a Beomite surface treatment process, and no significant differences in retention behavior were discovered. The dip test results revealed two distinct regions of condensate retention, each holding approximately half of the total liquid retained by the sample. As expected, condensate retention increased as the pores sizes decreased. A model based on surface tension was developed to predict the condensate retention in the metal foam samples and verified using a regular mesh. Applying the model to both the ideal and actual metal foam geometries showed good agreement with the dip test results in this study.
Resumo:
Devido às necessidades da indústria atual é cada vez mais importante a utilização de métodos de união de materiais distintos. A utilização de adesivos no processo de produção de materiais compósitos tem uma grande aplicação, uma vez que permite ligar os diferentes materiais e ainda reduzir significativamente o peso do conjunto. Este trabalho teve como principal objetivo aumentar a resistência à delaminação de materiais compósitos no sentido da espessura, concretamente dos plásticos reforçados com fibras de carbono (CFRP), através da utilização de placas da liga de alumínio 2024-T3. Este conceito é muito semelhante ao utilizado nos laminados por fibras e metal (LFM) para aumentar a sua resistência à delaminação. Pretendeu-se também a identificação da configuração da junta que apresenta melhores resultados, comparativamente à junta de referência composta apenas por CFRP. Inicialmente, produziram-se apenas juntas de CFRP que foram utilizadas como comparação com os laminados de fibras e metal. Com o objetivo de melhorar a adesão entre os CFRP e a liga de alumínio, foram realizados três tratamentos superficiais diferentes, nomeadamente a lixagem, a anodização e o ataque com ácido. Posteriormente, foram produzidas as juntas com as seguintes configurações: CFRP-AL-CFRP, CFRP-AL-CFRP-AL-CFRP e AL-CFRP-AL. A realização deste trabalho permitiu concluir que com a adição de placas de alumínio, se conseguiu um melhoramento da resistência à delaminação das fibras de carbono e ainda um aumento da resistência específica no sentido da sua espessura. A JSS com a configuração AL-CFRP-AL e com comprimento de sobreposição de 50 mm foi a configuração que apresentou uma força de rotura mais elevada, ou seja, uma maior resistência à delaminação, comparativamente à junta de referência e às restantes configurações em estudo. A falha coesiva verificada perto da interface da junta AL-CFRP-AL, pode ser devida ao elevado comprimento de sobreposição e às diferentes elasticidades do alumínio e do CFRP, o que naturalmente levou a elevadas tensões localizadas nas extremidades da junta. Os resultados demostraram que é possível aumentar a resistência transversal do compósito utilizando uma placa de alumínio.