966 resultados para Medicinal plant analysis
Resumo:
This paper explores concentration levels in the ownership of intellectual property rights over plant varieties worldwide. An analysis of data for 30 UPOV member-countries shows a high degree of concentration in the ownership of plant variety rights for six major crops at the national level in the developed world. Much of this concentration has arisen owing to the rapid consolidation of the seed industry through mergers and acquisitions, especially in the 1990s. A high degree of concentration in the ownership of plant variety rights, in combination with recent efforts to strengthen plant variety protection regimes, is likely to have significant effects on the prospects for future innovation in plant breeding and the distribution of market power between companies. For developing countries, concentration in intellectual property right ownership may have important implications for the structure of domestic seed industries and access to protected varieties and associated plant breeding technologies. These implications for developing countries are likely to become apparent in the context of the rapid spread of plant variety protection and access legislation, emerging changes in the international exchange regime for plant material and liberalised investment policies permitting foreign investment in the seeds sector. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Field experiments were conducted in field bean in the north-eastern part of the Republic of Croatia to compare weed control and crop response under different management practices within the critical period of field bean production. The practices consisted in broadcast application of labelled rate of preemergence herbicide (PRE) and postemergence herbicide application: (POST) broadcast, band application over the rows, and band application combined with mechanical cultivation using of different herbicide doses recommended by the manufacturer (2x, 1x, 1/2x, 1/4x, 1/8x). In 1999, weed control with PRE application of pendimethalin was superior to POST bentazone application due to late emergence of weeds and lack of residual herbicide control. In 2000 bentazone combined with cycloxydim controlled weeds in field bean better than PRE herbicide application. Based on the results of this research, single PRE or POST application of herbicide did not control a broad spectrum of weeds and did not provide the commercially acceptable full season control. Reduced rates of herbicide are not advisable tinder high weed pressure.
Resumo:
The main aims of this study were to assess grazing impacts on bee communities in fragmented mediterranean shrubland (phrygana) and woodland habitats that also experience frequent wildfires, and to explain the mechanisms by which these impacts occur. Fieldwork was carried out in 1999 and 2000 on Mount Carmel, in northern Israel, a known hot-spot for bee diversity. Habitats with a range of post-burn ages and varying intensities of cattle grazing were surveyed by transect recording, grazing levels, and the diversity and abundance of both flowers and bees were measured. The species richness of both bees and flowers were highest at moderate to high grazing intensities, and path-analysis indicated that the effects of both grazing and fire on bee diversity were mediated mainly through changes in flower diversity, herb flowers being more important than shrubs. The abundance of bees increased with intensified grazing pressure even at the highest levels surveyed. Surprisingly though, changes in bee abundance at high grazing levels were not caused directly by changes in flower cover. The variation in bee abundance may have been due to higher numbers of solitary bees from the family Halictidae in grazed sites, where compacted ground (nesting resource) and composites (forage resource) were abundant. The effects of grazing on plants were clearest in the intermediate-aged sites, where cattle inhibited the growth of some of the dominant shrubs, creating or maintaining more open patches where light-demanding herbs could grow, thus allowing a diverse flora to develop. Overall, bee communities benefit from a relatively high level of grazing in phrygana. Although bee and flower diversity may decrease under very heavy grazing, the present levels of grazing on Mount Carmel appear to have only beneficial effects on the bee community.
Resumo:
The mechanism of action and properties of a solid-phase ligand library made of hexapeptides (combinatorial peptide ligand libraries or CPLL), for capturing the "hidden proteome", i.e. the low- and very low-abundance proteins constituting the vast majority of species in any proteome, as applied to plant tissues, are reviewed here. Plant tissues are notoriously recalcitrant to protein extraction and to proteome analysis. Firstly, rigid plant cell walls need to be mechanically disrupted to release the cell content and, in addition to their poor protein yield, plant tissues are rich in proteases and oxidative enzymes, contain phenolic compounds, starches, oils, pigments and secondary metabolites that massively contaminate protein extracts. In addition, complex matrices of polysaccharides, including large amount of anionic pectins, are present. All these species compete with the binding of proteins to the CPLL beads, impeding proper capture and identification / detection of low-abundance species. When properly pre-treated, plant tissue extracts are amenable to capture by the CPLL beads revealing thus many new species among them low-abundance proteins. Examples are given on the treatment of leaf proteins, of corn seed extracts and of exudate proteins (latex from Hevea brasiliensis). In all cases, the detection of unique gene products via CPLL capture is at least twice that of control, untreated sample.
Resumo:
The accidental introduction of the spiralling whitefly, Aleurodicus dispersus Russell (Homoptera: Aleyrodidae) to Seychelles in late 2003 is exploited during early 2005 to study interactions between A. dispersus, native and exotic host plants and their associated arthropod fauna. The numbers of A. dispersus egg spirals and pupae, predator and herbivore taxa were recorded for eight related native/exotic pairs of host plants found on Mahe, the largest island in Seychelles. Our data revealed no significant difference in herbivore density (excluding A. dispersus) between related native and exotic plants, which suggests that the exotic plants do not benefit from 'enemy release'. There were also no differences in predator density, or combined species richness between native and exotic plants. Together these data suggest that 'biotic resistance' to invasion is also unlikely. Despite the apparent lack of differences in community structure significantly fewer A. dispersus egg spirals and pupae were found on the native plants than on the exotic plants. Additional data on A. dispersus density were collected on Cousin Island, a managed nature reserve in which exotic plants are carefully controlled. Significantly higher densities of A. dispersus were observed on Mahe, where exotic plants are abundant, than on Cousin. These data suggest that the rapid invasion of Seychelles by A. dispersus may largely be due to the high proportion of plant species that are both exotic and hosts of A. dispersus; no support was found for either the 'enemy release' or the 'biotic resistance' hypotheses.
Resumo:
The presumption that the synthesis of 'defence' compounds in plants must incur some 'trade-off' or penalty in terms of annual crop yields has been used to explain observed inverse correlations between resistance to herbivores and rates of growth or photosynthesis. An analysis of the cost of making secondary compounds suggests that this accounts for only a small part of the overall carbon budget of annual crop plants. Even the highest reported amounts of secondary metabolites found in different crop species (flavonoids, allylisothiocyanates, hydroxamic acids, 2-tridecanone) represent a carbon demand that can be satisfied by less than an hour's photosynthesis. Similar considerations apply to secondary compounds containing nitrogen or sulphur, which are unlikely to represent a major investment compared to the cost of making proteins, the major demand for these elements. Decreases in growth and photosynthesis in response to stress are more likely the result of programmed down-regulation. Observed correlations between yield and low contents of unpalatable or toxic compounds may be the result of parallel selection during the refinement of crop species by humans.
High throughput, high resolution selection of polymorphic microsatellite loci for multiplex analysis
Resumo:
Background Large-scale genetic profiling, mapping and genetic association studies require access to a series of well-characterised and polymorphic microsatellite markers with distinct and broad allele ranges. Selection of complementary microsatellite markers with non-overlapping allele ranges has historically proved to be a bottleneck in the development of multiplex microsatellite assays. The characterisation process for each microsatellite locus can be laborious and costly given the need for numerous, locus-specific fluorescent primers. Results Here, we describe a simple and inexpensive approach to select useful microsatellite markers. The system is based on the pooling of multiple unlabelled PCR amplicons and their subsequent ligation into a standard cloning vector. A second round of amplification utilising generic labelled primers targeting the vector and unlabelled locus-specific primers targeting the microsatellite flanking region yield allelic profiles that are representative of all individuals contained within the pool. Suitability of various DNA pool sizes was then tested for this purpose. DNA template pools containing between 8 and 96 individuals were assessed for the determination of allele ranges of individual microsatellite markers across a broad population. This helped resolve the balance between using pools that are large enough to allow the detection of many alleles against the risk of including too many individuals in a pool such that rare alleles are over-diluted and so do not appear in the pooled microsatellite profile. Pools of DNA from 12 individuals allowed the reliable detection of all alleles present in the pool. Conclusion The use of generic vector-specific fluorescent primers and unlabelled locus-specific primers provides a high resolution, rapid and inexpensive approach for the selection of highly polymorphic microsatellite loci that possess non-overlapping allele ranges for use in large-scale multiplex assays.
Resumo:
The mechanism of action and properties of a solid-phase ligand library made of hexapeptides (combinatorial peptide ligand libraries or CPLL, for capturing the "hidden proteome", i.e. the low- and very low-abundance proteins Constituting the vast majority of species in any proteome. as applied to plant tissues, are reviewed here. Plant tissues are notoriously recalcitrant to protein extraction and to proteome analysis, Firstly, rigid plant cell walls need to be mechanically disrupted to release the cell content and, in addition to their poor protein yield, plant tissues are rich in proteases and oxidative enzymes, contain phenolic Compounds, starches, oils, pigments and secondary metabolites that massively contaminate protein extracts. In addition, complex matrices of polysaccharides, including large amount of anionic pectins, are present. All these species compete with the binding of proteins to the CPLL beads, impeding proper capture and identification I detection of low-abundance species. When properly pre-treated, plant tissue extracts are amenable to capture by the CPLL beads revealing thus many new species among them low-abundance proteins. Examples are given on the treatment of leaf proteins, of corn seed extracts and of exudate proteins (latex from Hevea brasiliensis). In all cases, the detection of unique gene products via CPLL Capture is at least twice that of control, untreated sample. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper examines the life cycle GHG emissions from existing UK pulverized coal power plants. The life cycle of the electricity Generation plant includes construction, operation and decommissioning. The operation phase is extended to upstream and downstream processes. Upstream processes include the mining and transport of coal including methane leakage and the production and transport of limestone and ammonia, which are necessary for flue gas clean up. Downstream processes, on the other hand, include waste disposal and the recovery of land used for surface mining. The methodology used is material based process analysis that allows calculation of the total emissions for each process involved. A simple model for predicting the energy and material requirements of the power plant is developed. Preliminary calculations reveal that for a typical UK coal fired plant, the life cycle emissions amount to 990 g CO2-e/kWh of electricity generated, which compares well with previous UK studies. The majority of these emissions result from direct fuel combustion (882 g/kWh 89%) with methane leakage from mining operations accounting for 60% of indirect emissions. In total, mining operations (including methane leakage) account for 67.4% of indirect emissions, while limestone and other material production and transport account for 31.5%. The methodology developed is also applied to a typical IGCC power plant. It is found that IGCC life cycle emissions are 15% less than those from PC power plants. Furthermore, upon investigating the influence of power plant parameters on life cycle emissions, it is determined that, while the effect of changing the load factor is negligible, increasing efficiency from 35% to 38% can reduce emissions by 7.6%. The current study is funded by the UK National Environment Research Council (NERC) and is undertaken as part of the UK Carbon Capture and Storage Consortium (UKCCSC). Future work will investigate the life cycle emissions from other power generation technologies with and without carbon capture and storage. The current paper reveals that it might be possible that, when CCS is employed. the emissions during generation decrease to a level where the emissions from upstream processes (i.e. coal production and transport) become dominant, and so, the life cycle efficiency of the CCS system can be significantly reduced. The location of coal, coal composition and mining method are important in determining the overall impacts. In addition to studying the net emissions from CCS systems, future work will also investigate the feasibility and technoeconomics of these systems as a means of carbon abatement.
Resumo:
Neoglycolipid technology is the basis of a microarray platform for assigning oligosaccharide ligands for carbohydrate-binding proteins. The strategy for generating the neoglycolipid probes by reductive amination results in ring opening of the core monosaccharides. This often limits applicability to short-chain saccharides, although the majority of recognition motifs are satisfactorily presented with neoglycolipids of longer oligosaccharides. Here, we describe neoglycolipids prepared by oxime ligation. We provide evidence from NMR studies that a significant proportion of the oxime-linked core monosaccharide is in the ring-closed form, and this form selectively interacts with a carbohydrate-binding protein. By microarray analyses we demonstrate the effective presentation with oxime-linked neoglycolipids of (1) Lewis(x) trisaccharide to antibodies to Lewisx, (2) sialyllactose analogs to the sialic acid-binding receptors, siglecs, and (3) N-glycans to a plant lectin that requires an intact N-acetylglucosamine core.
Resumo:
A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae). On the basis of these sequences alone, the E-Pae strains were identical to the Pae type-strain (I-Pae), isolated from leaf spots on Indian horse chestnut in India in 1969. The phylogenetic analyses also showed that Pae belongs to a distinct clade of P. syringae pathovars adapted to woody hosts. We generated genome-wide Illumina sequence data from the three E-Pae strains and one strain of I-Pae. Comparative genomic analyses revealed pathovar-specific genomic regions in Pae potentially implicated in virulence on a tree host, including genes for the catabolism of plant-derived aromatic compounds and enterobactin synthesis. Several gene clusters displayed intra-pathovar variation, including those encoding type IV secretion, a novel fatty acid biosynthesis pathway and a sucrose uptake pathway. Rates of single nucleotide polymorphisms in the four Pae genomes indicate that the three E-Pae strains diverged from each other much more recently than they diverged from I-Pae. The very low genetic diversity among the three geographically distinct E-Pae strains suggests that they originate from a single, recent introduction into Britain, thus highlighting the serious environmental risks posed by the spread of an exotic plant pathogenic bacterium to a new geographic location. The genomic regions in Pae that are absent from other P. syringae pathovars that infect herbaceous hosts may represent candidate genetic adaptations to infection of the woody parts of the tree.
Resumo:
Quantitative analysis by mass spectrometry (MS) is a major challenge in proteomics as the correlation between analyte concentration and signal intensity is often poor due to varying ionisation efficiencies in the presence of molecular competitors. However, relative quantitation methods that utilise differential stable isotope labelling and mass spectrometric detection are available. Many drawbacks inherent to chemical labelling methods (ICAT, iTRAQ) can be overcome by metabolic labelling with amino acids containing stable isotopes (e.g. 13C and/or 15N) in methods such as Stable Isotope Labelling with Amino acids in Cell culture (SILAC). SILAC has also been used for labelling of proteins in plant cell cultures (1) but is not suitable for whole plant labelling. Plants are usually autotrophic (fixing carbon from atmospheric CO2) and, thus, labelling with carbon isotopes becomes impractical. In addition, SILAC is expensive. Recently, Arabidopsis cell cultures were labelled with 15N in a medium containing nitrate as sole nitrogen source. This was shown to be suitable for quantifying proteins and nitrogen-containing metabolites from this cell culture (2,3). Labelling whole plants, however, offers the advantage of studying quantitatively the response to stimulation or disease of a whole multicellular organism or multi-organism systems at the molecular level. Furthermore, plant metabolism enables the use of inexpensive labelling media without introducing additional stress to the organism. And finally, hydroponics is ideal to undertake metabolic labelling under extremely well-controlled conditions. We demonstrate the suitability of metabolic 15N hydroponic isotope labelling of entire plants (HILEP) for relative quantitative proteomic analysis by mass spectrometry. To evaluate this methodology, Arabidopsis plants were grown hydroponically in 14N and 15N media and subjected to oxidative stress.
Resumo:
Rate coefficients for reactions of nitrate radicals (NO3) with the anthropogenic emissions 2-methylpent-2-ene, (Z)-3-methylpent-2-ene.. ethyl vinyl ether, and the stress-induced plant emission ethyl vinyl ketone (pent-1-en-3-one) were determined to be (9.3 +/- 1.1) x 10(-12), (9.3 +/- 3.2) x 10(-12), (1.7 +/- 1.3) x 10(-12) and (9.4 + 2.7) x 10(-17) cm(3) molecule(-1) s(-1). We performed kinetic experiments at room temperature and atmospheric pressure using a relative-rate technique with GC-FID analysis. Experiments with ethyl vinyl ether required a modification of our established procedure that might introduce additional uncertainties, and the errors suggested reflect these difficulties. Rate coefficients are discussed in terms of electronic and steric influences. Atmospheric lifetimes with respect to important oxidants in the troposphere were calculated. NO3-initiated oxidation is found to be the strongly dominating degradation route for 2-methylpent-2-ene, (Z)-3-methylpent-2-ene and ethyl vinyl ether. Atmospheric concentrations of the alkenes and their relative contribution to the total NMHC emissions from trucks can be expected to increase if plans for the introduction of particle filters for diesel engines are implemented on a global scale. Thus more kinetic data are required to better evaluate the impact of these emissions.
Resumo:
A rapid thiolytic degradation and cleanup procedure was developed for analyzing tannins directly in chlorophyll-containing sainfoin (Onobrychis viciifolia) plants. The technique proved suitable for complex tannin mixtures containing catechin, epicatechin, gallocatechin, and epigallocatechin flavan-3-ol units. The reaction time was standardized at 60 min to minimize the loss of structural information as a result of epimerization and degradation of terminal flavan-3-ol units. The results were evaluated by separate analysis of extractable and unextractable tannins, which accounted for 63.6−113.7% of the in situ plant tannins. It is of note that 70% aqueous acetone extracted tannins with a lower mean degree of polymerization (mDP) than was found for tannins analyzed in situ. Extractable tannins had between 4 and 29 lower mDP values. The method was validated by comparing results from individual and mixed sample sets. The tannin composition of different sainfoin accessions covered a range of mDP values from 16 to 83, procyanidin/prodelphinidin (PC/PD) ratios from 19.2/80.8 to 45.6/54.4, and cis/trans ratios from 74.1/25.9 to 88.0/12.0. This is the first high-throughput screening method that is suitable for analyzing condensed tannin contents and structural composition directly in green plant tissue.
Resumo:
Genetic analysis of heat tolerance will help breeders produce rice (Oryza sativa L.) varieties adapted to future climates. An F6 population of 181 recombinant inbred lines of Bala (tolerant) × Azucena (susceptible) was screened for heat tolerance at anthesis by measuring spikelet fertility at 30°C (control) and 38°C (high temperature) in experiments conducted in the Philippines and the United Kingdom. The parents varied significantly for absolute spikelet fertility under control (79–87%) and at high temperature (2.9–47.1%), and for relative spikelet fertility (high temperature/control) at high temperature (3.7–54.9%). There was no correlation between spikelet fertility in control and high-temperature conditions and no common quantitative trait loci (QTLs) were identified. Two QTLs for spikelet fertility under control conditions were identified on chromosomes 2 and 4. Eight QTLs for spikelet fertility under high-temperature conditions were identified on chromosomes 1, 2, 3, 8, 10, and 11. The most significant heat-responsive QTL, contributed by Bala and explaining up to 18% of the phenotypic variation, was identified on chromosome 1 (38.35 mega base pairs on the rice physical genome map). This QTL was also found to influence plant height, explaining 36.6% of the phenotypic variation. A comparison with other studies of abiotic (drought, cold, salinity) stresses showed QTLs at similar positions on chromosomes 1, 3, 8, and 10, suggesting common underlying stress-responsive regions of the genome.