886 resultados para Mathematical activity during 18th and 19th century
Resumo:
The regulation of the dopamine D1 receptor was investigated by using c-myc epitope-tagged D1 receptors expressed in Sf9 (fall armyworm ovary) cells. Treatment of D1 receptors with 10 microM dopamine for 15 min led to a loss of the dopamine-detected high-affinity state of the receptor accompanying a 40% reduction in the ability of the receptor to mediate maximal dopamine stimulation of adenylyl cyclase activity. After 60 min of agonist exposure, 45 min after the occurrence of desensitization, 28% of the cell surface receptors were internalized into an intracellular light vesicular membrane fraction as determined by radioligand binding and supported by photoaffinity labeling, immunocytochemical staining, and immunoblot analysis. Pretreatment of cells with concanavalin A or sucrose completely blocked agonist-induced D1 receptor internalization without preventing agonist-induced desensitization, indicating a biochemical separation of these processes. Collectively, these findings indicate that the desensitization of D1 receptor-coupled adenylyl cyclase activity and D1 receptor internalization are temporarily and biochemically distinct mechanisms regulating D1 receptor function following agonist activation.
Resumo:
Bone marrow and peripheral blood leukocytes from 19 leukemia patients were found to contain telomerase activity detectable by a PCR-based assay. Telomerase was also detectable in nonmalignant bone marrow and peripheral blood leukocytes from normal donors, including fractions enriched for granulocytes, T lymphocytes, and monocytes/B cells. Semiquantitative comparison revealed considerable overlap between telomerase activities in samples from normal subjects and leukemia patients, confounding evaluation of the role of telomerase in this disease. These data indicate that human telomerase is not restricted to immortal cells and suggest that the somatic expression of this enzyme may be more widespread than was previously inferred from the decline of human telomeres.
Resumo:
To identify proteins that regulate the transcriptional activity of c-Jun, we have used the yeast two-hybrid screen to detect mammalian polypeptides that might interact functionally with the N-terminal segment of c-Jun, a known regulatory region. Among the proteins identified is a short form of Stat3 (designated Stat3 beta). Stat3 beta is missing the 55 C-terminal amino acid residues of the long form (Stat3 alpha) and has 7 additional amino acid residues at its C terminus. In the absence of added cytokines, expression of Stat3 beta (but not Stat3 alpha) in transfected cells activated a promoter containing the interleukin 6 responsive element of the rat alpha 2-macroglobulin gene; coexpression of Stat3 beta and c-Jun led to enhanced cooperative activation of the promoter. Nuclear extracts of cells transfected with a Stat3 beta expression plasmid formed a complex with an oligonucleotide containing a Stat3 binding site, whereas extracts of cells transfected with a Stat3 alpha plasmid did not. We conclude that there is a short form of Stat3 (Stat3 beta), that Stat3 beta is transcriptionally active under conditions where Stat3 alpha is not, and that Stat3 beta and c-Jun are capable of cooperative activation of certain promoters.
Resumo:
Many features of Down syndrome might result from the overdosage of only a few genes located in a critical region of chromosome 21. To search for these genes, cosmids mapping in this region were isolated and used for trapping exons. One of the trapped exons obtained has a sequence very similar to part of the Drosophila single-minded (sim) gene, a master regulator of the early development of the fly central nervous system midline. Mapping data indicated that this exonic sequence is only present in the Down syndrome-critical region in the human genome. Hybridization of this exonic sequence with human fetal kidney poly(A)+ RNA revealed two transcripts of 6 and 4.3 kb. In situ hybridization of a probe derived from this exon with human and rat fetuses showed that the corresponding gene is expressed during early fetal life in the central nervous system and in other tissues, including the facial, skull, palate, and vertebra primordia. The expression pattern of this gene suggests that it might be involved in the pathogenesis of some of the morphological features and brain anomalies observed in Down syndrome.
Resumo:
Jasmonic acid (JA) is a naturally occurring growth regulator found in higher plants. Several physiological roles have been described for this compound (or a related compound, methyl jasmonate) during plant development and in response to biotic and abiotic stress. To accurately determine JA levels in plant tissue, we have synthesized JA containing 13C for use as an internal standard with an isotopic composition of [225]:[224] 0.98:0.02 compared with [225]:[224] 0.15:0.85 for natural material. GC analysis (flame ionization detection and MS) indicate that the internal standard is composed of 92% 2-(+/-)-[13C]JA and 8% 2-(+/-)-7-iso-[13C]JA. In soybean plants, JA levels were highest in young leaves, flowers, and fruit (highest in the pericarp). In soybean seeds and seedlings, JA levels were highest in the youngest organs including the hypocotyl hook, plumule, and 12-h axis. In soybean leaves that had been dehydrated to cause a 15% decrease in fresh weight, JA levels increased approximately 5-fold within 2 h and declined to approximately control levels by 4 h. In contrast, a lag time of 1-2 h occurred before abscisic acid accumulation reached a maximum. These results will be discussed in the context of multiple pathways for JA biosynthesis and the role of JA in plant development and responses to environmental signals.
Resumo:
Rab3A is a small GTP-binding protein expressed predominantly in brain and neuroendocrine cells, in which it is associated with synaptic and synaptic-like vesicles, respectively. Here we report that adult mouse fat cells and 3T3-L1 adipocytes also express Rab3A mRNA and protein. They do not express synaptophysin, an abundant protein in synaptic vesicles or synaptic-like vesicles. The amount of Rab3A mRNA and protein, like that of the highly homologous isoform Rab3D, increases severalfold during differentiation of 3T3-L1 fibroblasts into mature adipocytes. In fat cells, most Rab3D and Rab3A protein is bound to membrane, irrespective of insulin addition. Rab3A and Rab3D are localized in different subcellular compartments, since about half of the Rab3A, but none of the Rab3D, is associated with a low-density organelle(s). Rab3D and Rab3A may be involved in different pathways of regulated exocytosis in adipocytes. Moreover, in adipocytes Rab3A may define an exocytic organelle that is different from synaptic vesicles or synaptic-like microvesicles found in neuronal and endocrine cells.
Proactive and reactive inhibition during overt and covert actions. An electrical neuroimaging study.
Resumo:
Response inhibition is the ability to suppress inadequate but automatically activated, prepotent or ongoing response tendencies. In the framework of motor inhibition, two distinct operating strategies have been described: “proactive” and “reactive” control modes. In the proactive modality, inhibition is recruited in advance by predictive signals, and actively maintained before its enactment. Conversely, in the reactive control mode, inhibition is phasically enacted after the detection of the inhibitory signal. To date, ample evidence points to a core cerebral network for reactive inhibition comprising the right inferior frontal gyrus (rIFG), the presupplementary motor area (pre-SMA) and the basal ganglia (BG). Moreover, fMRI studies showed that cerebral activations during proactive and reactive inhibition largely overlap. These findings suggest that at least part of the neural network for reactive inhibition is recruited in advance, priming cortical regions in preparation for the upcoming inhibition. So far, proactive and reactive inhibitory mechanisms have been investigated during tasks in which the requested response to be stopped or withheld was an “overt” action execution (AE) (i.e., a movement effectively performed). Nevertheless, inhibitory mechanisms are also relevant for motor control during “covert actions” (i.e., potential motor acts not overtly performed), such as motor imagery (MI). MI is the conscious, voluntary mental rehearsal of action representations without any overt movement. Previous studies revealed a substantial overlap of activated motor-related brain networks in premotor, parietal and subcortical regions during overtly executed and imagined movements. Notwithstanding this evidence for a shared set of cerebral regions involved in encoding actions, whether or not those actions are effectively executed, the neural bases of motor inhibition during MI, preventing covert action from being overtly performed, in spite of the activation of the motor system, remain to be fully clarified. Taking into account this background, we performed a high density EEG study evaluating cerebral mechanisms and their related sources elicited during two types of cued Go/NoGo task, requiring the execution or withholding of an overt (Go) or a covert (MI) action, respectively. The EEG analyses were performed in two steps, with different aims: 1) Analysis of the “response phase” of the cued overt and covert Go/NoGo tasks, for the evaluation of reactive inhibitory control of overt and covert actions. 2) Analysis of the “preparatory phase” of the cued overt and covert Go/NoGo EEG datasets, focusing on cerebral activities time-locked to the preparatory signals, for the evaluation of proactive inhibitory mechanisms and their related neural sources. For these purposes, a spatiotemporal analysis of the scalp electric fields was applied on the EEG data recorded during the overt and covert Go/NoGo tasks. The spatiotemporal approach provide an objective definition of time windows for source analysis, relying on the statistical proof that the electric fields are different and thus generated by different neural sources. The analysis of the “response phase” revealed that key nodes of the inhibitory circuit, underpinning inhibition of the overt movement during the NoGo response, were also activated during the MI enactment. In both cases, inhibition relied on the activation of pre-SMA and rIFG, but with different temporal patterns of activation in accord with the intended “covert” or “overt” modality of motor performance. During the NoGo condition, the pre-SMA and rIFG were sequentially activated, pointing to an early decisional role of pre-SMA and to a later role of rIFG in the enactment of inhibitory control of the overt action. Conversely, a concomitant activation of pre-SMA and rIFG emerged during the imagined motor response. This latter finding suggested that an inhibitory mechanism (likely underpinned by the rIFG), could be prewired into a prepared “covert modality” of motor response, as an intrinsic component of the MI enactment. This mechanism would allow the rehearsal of the imagined motor representations, without any overt movement. The analyses of the “preparatory phase”, confirmed in both overt and covert Go/NoGo tasks the priming of cerebral regions pertaining to putative inhibitory network, reactively triggered in the following response phase. Nonetheless, differences in the preparatory strategies between the two tasks emerged, depending on the intended “overt” or “covert” modality of the possible incoming motor response. During the preparation of the overt Go/NoGo task, the cue primed the possible overt response programs in motor and premotor cortex. At the same time, through preactivation of a pre-SMA-related decisional mechanism, it triggered a parallel preparation for the successful response selection and/or inhibition during the subsequent response phase. Conversely, the preparatory strategy for the covert Go/NoGo task was centred on the goal-oriented priming of an inhibitory mechanism related to the rIFG that, being tuned to the instructed covert modality of the motor performance and instantiated during the subsequent MI enactment, allowed the imagined response to remain a potential motor act. Taken together, the results of the present study demonstrate a substantial overlap of cerebral networks activated during proactive recruitment and subsequent reactive enactment of motor inhibition in both overt and covert actions. At the same time, our data show that preparatory cues predisposed ab initio a different organization of the cerebral areas (in particular of the pre-SMA and rIFG) involved with sensorimotor transformations and motor inhibitory control for executed and imagined actions. During the preparatory phases of our cued overt and covert Go/NoGo tasks, the different adopted strategies were tuned to the “how” of the motor performance, reflecting the intended overt and covert modality of the possible incoming action.
Resumo:
"In 1559, Pieter Bruegel the Elder‘s depiction of {7f2015}Netherlandish Proverbs‖ illustrated his profound understanding of the Dutch love for proverbs, their contemporary values, and appreciation for moral lessons in art forms. Depicting gestures and poses that represented proverbial phrases enabled Bruegel‘s leap from didactic labels employed by other artists to his inscription-free success of {7f2015}Netherlandish Proverbs.‖ My examination reveals that Bruegel‘s employment of gestural imagery, indicating rhetorical phrases or proverbs, was reinforced by a history of scholarly curatorship for written proverb collections, humanist interest in proverbs, and use of Dutch vernacular to bolster protonational pride"
Resumo:
Poster submitted to the 22nd International Conference Stress and Anxiety Research Society (STAR), Palma de Mallorca, July, 12-14, 2001.
Resumo:
The constant increase in the production of electronic devices implies the need for an appropriate management of a growing number of waste electrical and electronic equipment. Thermal treatments represent an interesting alternative to recycle this kind of waste, but particular attention has to be paid to the potential emissions of toxic by-products. In this study, the emissions from thermal degradation of printed circuit boards (with and without metals) have been studied using a laboratory scale reactor, under oxidizing and inert atmosphere at 600 and 850 °C. Apart from carbon oxides, HBr was the main decomposition product, followed by high amounts of methane, ethylene, propylene, phenol and benzene. The maximum formation of PAHs was found in pyrolysis at 850 °C, naphthalene being the most abundant. High levels of 2-, 4-, 2,4-, 2,6- and 2,4,6-bromophenols were found, especially at 600 °C. Emissions of PCDD/Fs and dioxin-like PCBs were quite low and much lower than that of PBDD/Fs, due to the higher bromine content of the samples. Combustion at 600 °C was the run with the highest PBDD/F formation: the total content of eleven 2,3,7,8-substituted congeners (tetra- through heptaBDD/Fs) was 7240 and 3250 ng WHO2005-TEQ/kg sample, corresponding to the sample with and without metals, respectively.
Resumo:
Thermal characterization of coffee husk (Coffea arabica) from Colombian coffee has been studied. Different products, mostly volatile and semivolatile compounds, were analyzed, paying special attention to 16 polycyclic aromatic hydrocarbons (PAHs) classified by the United States Environmental Protection Agency (U.S. EPA) as priority pollutants, frequently used for checking toxicity in environmental samples. A fixed amount of raw material was exposed to different excess air ratios (λ = 0–2.33) and nominal temperature of 1123 K in a horizontal quartz reactor. The results show that coffee husk is a promising biomass for energetic exploitation with reduced formation of PAHs in a low air excess ratio. This implies reduction of carcinogenic potential in the limited presence of oxygen, demonstrated by calculating the carcinogenic potential (KE) for each experimental condition. Most volatile and semivolatile compounds followed different trends, with the oxygen presence prevailing their decomposition with increasing the air excess ratio.
Resumo:
Written in two columns, 14 lines per page, in a divani script in black ink, framed within double golden and blue lines. With catchwords on the verso of each leaf.