984 resultados para Malocclusion, angle class II
Resumo:
Early descriptions for species of Aka were poor in detail, and the only spicule type that occurs in this genus does not vary much between species, which led to taxonomic confusion. Moreover, the type specimens of 5 species of Aka are lost, causing considerable problems. Mediterranean specimens of Aka were identified as Aka labyrinthica (Hancock, 1849) by Topsent (1900), even though this species was originally described from the Indo-Pacific. All following publications on Mediterranean Aka accepted Topsent's decision. We assessed this problem with new samples from the Ionian Sea. Our material consisted of only one specimen of Aka, and we had to rely mainly on spicule characters for comparison to other species. We developed a system for species recognition solely based on spicular characters and biometry, involving a combination of the parameters oxea length, width, tip form and angle of curvature. This approach was surprisingly accurate. Forming ratios of the above parameters was less helpful, but can sometimes provide additional information. We identified our sample as Aka infesta (Johnson, 1899), and describe it as a minute-fistulate species with large, multicamerate erosion traces and stout, smooth oxeas. Our data further imply that A. labyrinthica sensu Hancock has not yet been found in the Mediterranean. A. labyrinthica sensu Topsent is a collection of different species not including A. labyrinthica sensu Hancock.
Resumo:
Heavy metals pollution in marine environments has caused great damage to marine biological and ecological systems. Heavy metals accumulate in marine creatures, after which they are delivered to higher trophic levels of marine organisms through the marine food chain, which causes serious harm to marine biological systems and human health. Additionally, excess carbon dioxide in the atmosphere has caused ocean acidification. Indeed, about one third of the CO2 released into the atmosphere by anthropogenic activities since the beginning of the industrial revolution has been absorbed by the world's oceans, which play a key role in moderating climate change. Modeling has shown that, if current trends in CO2 emissions continue, the average pH of the ocean will reach 7.8 by the end of this century, corresponding to 0.5 units below the pre-industrial level, or a three-fold increase in H+ concentration. The ocean pH has not been at this level for several millions of years. Additionally, these changes are occurring at speeds 100 times greater than ever previously observed. As a result, several marine species, communities and ecosystems might not have time to acclimate or adapt to these fast changes in ocean chemistry. In addition, decreasing ocean pH has the potential to seriously affect the growth, development and reproduction reproductive processes of marine organisms, as well as threaten normal development of the marine ecosystem. Copepods are an important part of the meiofauna that play an important role in the marine ecosystem. Pollution of the marine environment can influence their growth and development, as well as the ecological processes they are involved in. Accordingly, there is important scientific value to investigation of the response of copepods to ocean acidification and heavy metals pollution. In the present study, we evaluated the effects of simulated future ocean acidification and the toxicological interaction between ocean acidity and heavy metals of Cu and Cd on T. japonicus. To accomplish this, harpacticoids were exposed to Cu and Cd concentration gradient seawater that had been equilibrated with CO2 and air to reach pH 8.0, 7.7, 7.3 and 6.5 for 96 h. Survival was not significantly suppressed under single sea water acidification, and the final survival rates were greater than 93% in both the experimental groups and the controls. The toxicity of Cu to T. japonicus was significantly affected by sea water acidification, with the 96h LC50 decreasing by nearly threefold from 1.98 to 0.64 mg/L with decreasing pH. The 96 h LC50 of Cd decreased with decreasing pH, but there was no significant difference in mortality among pH treatments. The results of the present study demonstrated that the predicted future ocean acidification has the potential to negatively affect survival of T. japonicus by exacerbating the toxicity of Cu. The calculated safe concentrations of Cu were 11.9 (pH 7.7) and 10.5 (pH 7.3) µg/L, which were below the class I value and very close to the class II level of the China National Quality Standard for Sea Water. Overall, these results indicate that the Chinese coastal sea will face a