974 resultados para Main Memory
Resumo:
Williams syndrome is a genetic disorder that, it has been claimed, results in an unusual pattern of linguistic strengths and weaknesses. The current study investigated the hypothesis that there is a reduced influence of lexical knowledge on phonological short-term memory in Williams syndrome. Fourteen children with Williams syndrome and 2 vocabulary la matched control groups, 20 typically developing children and 13 children with learning difficulties, were tested on 2 probed serial-recall tasks. On the basis of previous findings, it was predicted that children with Williams syndrome would demonstrate (a) a reduced effect of lexicality on the recall of list items, (b) relatively poorer recall of list items compared with recall of serial order, and (c) a reduced tendency to produce lexicalization errors in the recall of nonwords. in fact, none of these predictions were supported. Alternative explanations for previous findings and implications for accounts of language development in Williams syndrome are discussed.
Resumo:
It has been suggested that there are systematic distortions in children's memory for temporal durations, such that children's memory is not just less accurate than that of adults but qualitatively different. Experiment I replicated the memory distortion effect by demonstrating developmental change in the tendency to confuse a reference duration with one that is shorter rather than longer than it. When the long-term memory demands of the task were reduced by providing reminders of the reference duration on every trial, there were no such qualitative changes in error patterns (Experiment 2). Further evidence for developmental changes in memory distortion was found in the temporal generalization task of Experiment 3, in which stimuli were spaced logarithmically rather than linearly. In Experiment 4, a similar distortion pattern was absent in a task in which children made judgments about the pitch rather than the duration of stimuli, suggesting the effect may be specific to time estimation. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Hoerl claims that episodic memory is necessary for a concept of the past, and that we should consider some severely amnesic patients as lacking such a concept. I question whether this description of such patients is plausible, and whether it helps us understand lack of insight in amnesia. I finish by arguing that Hoerl's analysis of what constitutes a concept of the past raises interesting developmental issues.
Resumo:
We present the results of a photometric survey of rotation rates in the Coma Berenices (Melotte 111) open cluster, using data obtained as part of the SuperWASP exoplanetary transit-search programme. The goal of the Coma survey was to measure precise rotation periods for main-sequence F, G and K dwarfs in this intermediate-age (~600 Myr) cluster, and to determine the extent to which magnetic braking has caused the stellar spin periods to converge. We find a tight, almost linear relationship between rotation period and J - K colour with an rms scatter of only 2 per cent. The relation is similar to that seen among F, G and K stars in the Hyades. Such strong convergence can only be explained if angular momentum is not at present being transferred from a reservoir in the deep stellar interiors to the surface layers. We conclude that the coupling time-scale for angular momentum transport from a rapidly spinning radiative core to the outer convective zone must be substantially shorter than the cluster age, and that from the age of Coma onwards stars rotate effectively as solid bodies. The existence of a tight relationship between stellar mass and rotation period at a given age supports the use of stellar rotation period as an age indicator in F, G and K stars of Hyades age and older. We demonstrate that individual stellar ages can be determined within the Coma population with an internal precision of the order of 9 per cent (rms), using a standard magnetic braking law in which rotation period increases with the square root of stellar age. We find that a slight modification to the magnetic-braking power law, P ~ t0.56, yields rotational and asteroseismological ages in good agreement for the Sun and other stars of solar age for which p-mode studies and photometric rotation periods have been published.
Resumo:
Three experiments examined developmental changes in serial recall of lists of 6 letters, with errors classified as movements, omissions, intrusions, or repetitions. In Experiments 1 and 2, developmental differences between groups of children aged from 7 to 11 years and adults were found in the pattern of serial recall errors. The errors of older participants were more likely to be movements than were those of younger participants, who made more intrusions and omissions. The number of repetition errors did not change with age, and this finding is interpreted in terms of a developmentally invariant postoutput response inhibition process. This interpretation was supported by the findings of Experiment 3, which measured levels of response inhibition in 7-, 9-, and 11-year-olds by comparing recall of lists with and without repeated items. Response inhibition remained developmentally invariant, although older children showed greater response facilitation (improved correct recall of adjacent repeated items). Group differences in the patterns of other errors are accounted for in terms of developmental changes in levels of output forgetting and changes in the efficiency of temporal encoding processes, (C) 2000 Academic Press.