996 resultados para Macrophages -- drug effects
Resumo:
The earliest sign of neurotoxicity observed after exposure of three-dimensional brain cell cultures to low concentrations of mercury compounds is a microglial reaction. We hypothesized that an induction of apoptosis by mercury compounds could be an activating signal of the microglial reaction. Aggregating brain cell cultures of fetal rat telencephalon were treated for 10 days with either mercury chloride or monomethylmercury chloride at noncytotoxic concentrations during two developmental periods: from day 5 to 15, corresponding to an immature stage, and from day 25 to 35 corresponding to a mature stage. Apoptosis was evaluated by the TUNEL technique. It was found that both mercury compounds caused a significant increase in the number of apoptotic cells, but exclusively in immature cultures exhibiting also spontaneous apoptosis. Double staining by the TUNEL technique combined with either neuronal or astroglial markers revealed that the proportion of cells undergoing apoptosis was highest for astrocytes. Furthermore neither an association nor a colocalization was found between apoptotic cells and microglial cells. In conclusion, it appears that the induction of apoptosis by mercury compounds in immature cells is only an acceleration of a spontaneously occurring process, and that it is not a directly related to the early microglial reaction.
Resumo:
In the liver of oviparous vertebrates vitellogenin gene expression is controlled by estrogen. The nucleotide sequence of the 5' flanking region of the Xenopus laevis vitellogenin genes A1, A2, B1 and B2 has been determined. These sequences have been compared to each other and to the equivalent region of the chicken vitellogenin II and apo-VLDLII genes which are also expressed in the liver in response to estrogen. The homology between the 5' flanking region of the Xenopus genes B1 and B2 is higher than between the corresponding regions of the other closely related genes A1 and A2. Four short blocks of sequence homology which are present at equivalent positions in the vitellogenin genes of both Xenopus laevis and chicken are characterized. A short sequence with two-fold rotational symmetry (GGTCANNNTGACC) was found at similar positions upstream of the five vitellogenin genes and is also present in two copies close to the 5' end of the chicken apo-VLDLII gene. The possible functional significance of this sequence, common to liver estrogen-responsive genes, is discussed.
Resumo:
The antifungal agent fluconazole (FLC) is widely used in clinical practice. Monitoring FLC levels is useful in complicated clinical settings and in experimental infection models. A bioassay using Candida pseudotropicalis, a simple and cost-effective method, is validated only for FLC levels ranging from 5 to 40 mg/liter. An extension of the analytical range is needed to cover most yeast MICs. A new bioassay in RPMI agar containing methylene blue was developed using C. albicans DSY1024, a mutant rendered hypersusceptible to FLC constructed by the deletion of the multidrug efflux transporter genes CDR1, CDR2, CaMDR1, and FLU1. Reproducible standard curves were obtained with FLC concentrations in plasma ranging from 1 to 100 mg/liter (quadratic regression coefficient > 0.997). The absolute sensitivity was 0.026 microg of FLC. The method was internally validated according to current guidelines for analytical method validation. Both accuracy and precision lied in the required +/-15% range. FLC levels measured by bioassay and by high-performance liquid chromatography (HPLC) performed with 62 plasma samples from humans and rats showed a strong correlation (coefficients, 0.979 and 0.995, respectively; percent deviations of bioassay from HPLC values, 0.44% +/- 15.31% and 2.66% +/- 7.54%, respectively). In summary, this newly developed bioassay is sensitive, simple, rapid, and inexpensive. It allows nonspecialized laboratories to determine FLC levels in plasma to within the clinically relevant concentration range and represents a useful tool for experimental treatment models.
Resumo:
Peripheral neurons can regenerate after axotomy; in this process, the role of cytoskeletal proteins is important because they contribute to formation and reorganization, growth, transport, stability and plasticity of axons. In the present study, we examined the effects of thyroid hormones (T3) on the expression of major cytoskeletal proteins during sciatic nerve regeneration. At various times after sciatic nerve transection and T3 local administration, segments of operated nerves from T3-treated rats and control rats were examined by Western blotting for the presence of neurofilament, tubulin and vimentin. Our results revealed that, during the first week after surgery, T3 treatment did not significantly alter the level of NF subunits and tubulin in the different segments of operated nerves compared to control nerves. Two or 4 weeks after operation, the concentration of NF-H and NF-M isoforms was clearly increased by T3 treatment. Moreover, under T3-treatment, NF proteins appeared more rapidly in the distal segment of operated nerves. Likewise, the levels of betaIII, and of acetylated and tyrosinated tubulin isotypes, were also up-regulated by T3-treatment during regeneration. However, only the tyrosinated tubulin form appeared earlier in the distal nerve segments. At this stage of regeneration, T3 had no effect on the level of vimentin expression. In conclusion, thyroid hormone improves and accelerates peripheral nerve regeneration and exerts a positive effect on cytoskeletal protein expression and transport involved in axonal regeneration. These results help us to understand partially the mechanism by which thyroid hormones enhance peripheral nerve regeneration. The stimulating effect of T3 on peripheral nerve regeneration may have considerable therapeutic potential.
Resumo:
AIMS: Connexins (Cxs) play a role in the contractility of the aorta wall. We investigated how connexins of the endothelial cells (ECs; Cx37, Cx40) and smooth muscle cells (SMCs; Cx43, Cx45) of the aorta change during renin-dependent and -independent hypertension. METHODS AND RESULTS: We subjected both wild-type (WT) mice and mice lacking Cx40 (Cx40(-/-)), to either a two-kidney, one-clip procedure or to N-nitro-l-arginine-methyl-ester treatment, which induce renin-dependent and -independent hypertension, respectively. All hypertensive mice featured a thickened aortic wall, increased levels of Cx37 and Cx45 in SMC, and of Cx40 in EC (except in Cx40(-/-) mice). Cx43 was up-regulated, with no effect on its S368 phosphorylation, only in the SMCs of renin-dependent models of hypertension. Blockade of the renin-angiotensin system of Cx40(-/-) mice normalized blood pressure and prevented both aortic thickening and Cx alterations. Ex vivo exposure of WT aortas, carotids, and mesenteric arteries to physiologically relevant levels of angiotensin II (AngII) increased the levels of Cx43, but not of other Cx. In the aortic SMC line of A7r5 cells, AngII activated kinase-dependent pathways and induced binding of the nuclear factor-kappa B (NF-kappaB) to the Cx43 gene promoter, increasing Cx43 expression. CONCLUSION: In both large and small arteries, hypertension differently regulates Cx expression in SMC and EC layers. Cx43 is selectively increased in renin-dependent hypertension via an AngII activation of the extracellular signal-regulated kinase and NF-kappaB pathways.
Resumo:
The thermogenic response to a 100 g oral glucose load was studied by indirect calorimetry in 13 older persons (age range, 38-68 years) and compared with that of 16 young matched controls of similar body weight (age range, 19-30 years). The glucose-induced thermogenesis measured over 180 min and expressed as a per cent of the energy content of the glucose load was found to be reduced in the older subjects, i.e., 5.8 +/- 0.3 per cent vs 8.6 +/- 0.7 per cent, P less than 0.002). This was also accompanied by a significant decrease in the glucose oxidation rate when averaged over the same three-hour period following the glucose load, i.e., 153 mg/min vs 213 mg/min in the control subjects (P less than 0.001) despite a similar time course of glycemia. This study suggests that the thermogenic response to an oral glucose load is blunted in older people, and this may represent an additional factor that contributes to the decreased energy requirement with age and therefore to the increased propensity to obesity if energy intake is not adjusted.
Resumo:
Lung cancer is characterized by the highest incidence of solid tumor-related brain metastases, which are reported with a growing incidence during the last decade. Prognostic assessment may help to identify subgroups of patients that could benefit from more aggressive therapy of metastatic disease, in particular when central nervous system is involved. The recent sub-classification of non-small cell lung cancer (NSCLC) into molecularly-defined "oncogene-addicted" tumors, the emergence of effective targeted treatments in molecularly defined patient subsets, global improvement of advanced NSCLC survival as well as the availability of refined new radiotherapy techniques are likely to impact on outcomes of patients with brain dissemination. The present review focuses on key evidence and research strategies for systemic treatment of patients with central nervous system involvement in non-small cell lung cancer.
Resumo:
PURPOSE: Superior oblique myokymia (SOM) is an uncommon disorder characterized by episodic monocular oscillopsia. Several medications have been reported to be of benefit for some patients with this condition, but the efficacy of medical treatment has not been well established and little long-term follow-up data are available. The purpose of this study was to better clarify the role of medical therapy in the management of SOM. METHODS: A retrospective review of patients with this disorder seen in an outpatient neuro-ophthalmology clinic. The diagnosis of SOM was based on a history of episodic unilateral oscillopsia with or without torsional diplopia. Twenty-seven patients with SOM were identified. Twenty of these were treated medically and these formed the basis of the study. Follow-up interval ranged from 1 to 12.5 years (mean, 6.5 years). The main outcome measure was relief of oscillopsia. RESULTS: Fifteen of the 18 patients treated with carbamazepine (83%) reported some benefit, 6 of whom continue to do well on medication 9 months to 5 years later. In four patients improvement was only transient and in five others treatment was subsequently discontinued for various reasons. In addition, one patient had sustained benefit from phenytoin, one from propranolol, and one from propranolol plus valproic acid. We found no treatment success with baclofen. Overall, nine patients (45%) enjoy sustained benefit unassociated with adverse side effects. CONCLUSIONS: In contrast to previous reports emphasizing the efficacy of surgery for SOM, our data demonstrate the potential benefits of medical treatment for patients with this disorder.
Resumo:
PURPOSE: To evaluate the photodynamic potential of a new hydrosoluble photosensitizer (WST-11, Stakel; Steba Biotech, Toussus-Le-Noble, France), for use in occlusion of normal choroidal vessels in the rabbit eye and CNV (choroidal neovascularization) in the rat eye. METHODS: Occlusive and nonocclusive parameters of Stakel and verteporfin photodynamic therapy (PDT) were investigated in pigmented rabbits. Eyes were followed by fluorescein angiography (FA) and histology at various intervals after PDT. RESULTS: When occlusive parameters (fluence of 50 J/cm(2), 5 mg/kg drug dose and DLI [distance to light illumination] of 1 minute) were used, Stakel PDT was efficient immediately after treatment without associated structural damage of the RPE and retina overlying the treated choroid in the rabbit eye. Two days later, total occlusion of the choriocapillaries was seen in 100% of the treated eyes, along with accompanying histologic structural changes in the overlying retina. When the occlusive parameters (fluence, 100 J/cm2; drug dose, 12 mg/m2; and DLI, 5 minutes) of verteporfin PDT were used, occlusion of the choriocapillaries was observed in 89% of the treated eyes. Histology performed immediately after treatment demonstrated structural damage of the overlying retina and RPE layer. Weaker, nonocclusive Stakel PDT parameters (25 J/cm2, 5 mg/kg, and DLI of 10 minutes) did not induce choriocapillary occlusion or retinal lesions on FA or histology. Weaker, nonocclusive verteporfin PDT parameters (10 J/cm2, 0.2 mg/kg, and DLI of 5 minutes) did not induce choriocapillary occlusion. However, histology of these eyes showed the presence of damage in the retinal and choroidal tissues. Moreover, preliminary results indicate that selective CNV occlusion can be achieved with Stakel PDT in the rat eye. CONCLUSIONS: Unlike verteporfin PDT, Stakel PDT does not cause direct damage to the RPE cell layer or retina. These observations indicate that Stakel PDT may have a high potential for beneficial therapeutic outcomes in treatment of AMD.
Resumo:
CONTEXT: The Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months (FREEDOM) extension is evaluating the long-term efficacy and safety of denosumab for up to 10 years. OBJECTIVE: The objective of the study was to report results from the first 3 years of the extension, representing up to 6 years of denosumab exposure. DESIGN, SETTING, AND PARTICIPANTS: This was a multicenter, international, open-label study of 4550 women. INTERVENTION: Women from the FREEDOM denosumab group received 3 more years of denosumab for a total of 6 years (long-term) and women from the FREEDOM placebo group received 3 years of denosumab (crossover). MAIN OUTCOME MEASURES: Bone turnover markers (BTMs), bone mineral density (BMD), fracture, and safety data are reported. RESULTS: Reductions in BTMs were maintained (long-term) or achieved rapidly (crossover) after denosumab administration. In the long-term group, BMD further increased for cumulative 6-year gains of 15.2% (lumbar spine) and 7.5% (total hip). During the first 3 years of denosumab treatment, the crossover group had significant gains in lumbar spine (9.4%) and total hip (4.8%) BMD, similar to the long-term group during the 3-year FREEDOM trial. In the long-term group, fracture incidences remained low and below the rates projected for a virtual placebo cohort. In the crossover group, 3-year incidences of new vertebral and nonvertebral fractures were similar to those of the FREEDOM denosumab group. Incidence rates of adverse events did not increase over time. Six participants had events of osteonecrosis of the jaw confirmed by adjudication. One participant had a fracture adjudicated as consistent with atypical femoral fracture. CONCLUSION: Denosumab treatment for 6 years remained well tolerated, maintained reduced bone turnover, and continued to increase BMD. Fracture incidence remained low.
Resumo:
We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.
Resumo:
Wounding plant tissues initiates large-scale changes in transcription coupled to growth arrest, allowing resource diversion for defense. These processes are mediated in large part by the potent lipid regulator jasmonic acid (JA). Genes selected from a list of wound-inducible transcripts regulated by the jasmonate pathway were overexpressed in Arabidopsis thaliana, and the transgenic plants were then assayed for sensitivity to methyl jasmonate (MeJA). When grown in the presence of MeJA, the roots of plants overexpressing a gene of unknown function were longer than those of wild-type plants. When transcript levels for this gene, which we named JASMONATE-ASSOCIATED1 (JAS1), were reduced by RNA interference, the plants showed increased sensitivity to MeJA and growth was inhibited. These gain- and loss-of-function assays suggest that this gene acts as a repressor of JA-inhibited growth. An alternative transcript from the gene encoding a second protein isoform with a longer C terminus failed to repress jasmonate sensitivity. This identified a conserved C-terminal sequence in JAS1 and related genes, all of which also contain Zim motifs and many of which are jasmonate-regulated. Both forms of JAS1 were found to localize to the nucleus in transient expression assays. Physiological tests of growth responses after wounding were consistent with the fact that JAS1 is a repressor of JA-regulated growth retardation.
Resumo:
Many biotic and abiotic factors affect the persistence and activity of beneficial pseudomonads introduced into soil to suppress plant diseases. One such factor may be the presence of virulent bacteriophages that decimate the population of the introduced bacteria, thereby reducing their beneficial effect. We have isolated a lytic bacteriophage (phi)GP100) that specifically infects the biocontrol bacterium Pseudomonas fluorescens CHA0 and some closely related Pseudomonas strains. phiGP100 was found to be a double-stranded-DNA phage with an icosahedral head, a stubby tail, and a genome size of approximately 50 kb. Replication of phiGP100 was negatively affected at temperatures higher than 25 degrees C. phiGP100 had a negative impact on the population size and the biocontrol activity of P. fluorescens strain CHA0-Rif (a rifampicin-resistant variant of CHA0) in natural soil microcosms. In the presence of phiGP100, the population size of strain CHA0-Rif in soil and on cucumber roots was reduced more than 100-fold. As a consequence, the bacterium's capacity to protect cucumber against a root disease caused by the pathogenic oomycete Pythium ultimum was entirely abolished. In contrast, the phage affected neither root colonization and nor the disease suppressive effect of a phiDGP100-resistant variant of strain CHA0-Rif. To our knowledge, this study is the first to illustrate the potential of phages to impair biocontrol performance of beneficial bacteria released into the natural soil environment.
Resumo:
Synaptosomal-associated protein of 25 kDa (SNAP-25) is thought to play a key role in vesicle exocytosis and in the control of transmitter release. However, the precise mechanisms of action as well as the regulation of SNAP-25 remain unclear. Here we show by immunoprecipitation that activation of protein kinase C (PKC) by phorbol esters results in an increase in SNAP-25 phosphorylation. In addition, immunochemical analysis of two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels shows that SNAP-25 focuses as three or four distinct spots in the expected range of molecular weight and isoelectric point. Changing the phosphorylation level of the protein by incubating the slices in the presence of either a PKC agonist (phorbol 12,13-dibutyrate) or antagonist (chelerythrine) modified the distribution of SNAP-25 among these spots. Phorbol 12,13-dibutyrate increased the intensity of the spots with higher molecular weight and lower isoelectric point, whereas chelerythrine produced the opposite effect. This effect was specific for regulators of PKC, as agonists of other kinases did not produce similar changes. Induction of long-term potentiation, a property involved in learning mechanisms, and production of seizures with a GABA(A) receptor antagonist also increased the intensity of the spots with higher molecular weight and lower isoelectric point. This effect was prevented by the PKC inhibitor chelerythrine. We conclude that SNAP-25 can be phosphorylated in situ by PKC in an activity-dependent manner.
Resumo:
INTRODUCTION: The evaluation of a new drug in normotensive volunteers provides important pharmacodynamic and pharmacokinetic information as long as the compound has a specific mechanism of action which can be evaluated in healthy subjects as well as in patients. The purpose of the present paper is to discuss the results that have been obtained in normal volunteers with the specific angiotensin II receptor antagonist, losartan potassium. DOSE-FINDING: Over the last few years, studies in normotensive subjects have demonstrated that the minimal dose of losartan that produces maximal efficacy is 40-80 mg. Losartan has a long duration of action and its ability to produce a sustained blockade of the renin-angiotensin system is due almost exclusively to the active metabolite E3174. HORMONAL EFFECTS: Angiotensin II receptor blockade with losartan induces an expected increase in plasma renin activity and plasma angiotensin II levels. A decrease in plasma aldosterone levels has been found only with a high dose of losartan (120 mg). RENAL AND BLOOD PRESSURE EFFECTS: In normotensive subjects, losartan has little or no effect on blood pressure unless the subjects are markedly salt-depleted. Losartan causes no change in the glomerular filtration rate and either no modification or only a slight increase in renal blood flow. Losartan significantly increases urinary sodium excretion, however, and surprisingly produces a transient rise in urinary potassium excretion. Finally, losartan increases uric acid excretion and lowers plasma uric acid levels. CONCLUSIONS: These results suggest that losartan is an effective angiotensin II receptor antagonist in normal subjects. Its safety and clinical efficacy in hypertensive patients will be addressed in large clinical trials.