893 resultados para Macrophage suppression
Resumo:
Movimentazione, da parte di un braccio robotico, di un recipiente riempito con un liquido nello spazio tridimensionale. Sistema di trasferimento liquidi basato sul KUKA youBot, piattaforma open source per la ricerca scientifica. Braccio robotico a 5 gradi di libertà con struttura ortho-parallel e cinematica risolvibile in forma chiusa tramite l’applicazione di Pieper. Studio dei modi di vibrare dei liquidi e modellizzazione dei fenomeni ondosi tramite modello equivalente di tipo pendolo. Analisi delle metodologie di controllo di tipo feed-forward volte a sopprimere la risposta oscillatoria di un tipico sistema vibratorio. Filtraggio delle traiettorie di riferimento da imporre allo youBot, in modo tale da sopprimere le vibrazioni in uscita della massa d’acqua movimentata. Analisi e comparazione delle metodologie di input shaping e filtro esponenziale. Validazione sperimentale delle metodologie proposte implementandole sul manipolatore youBot. Misura dell’entità del moto ondoso basata su dati acquisiti tramite camera RGBD ASUS Xtion PRO LIVE. Algoritmo di visione per l’elaborazione offline dei dati acquisiti, con output l’andamento dell’angolo di oscillazione del piano interpolante la superficie del liquido movimentato.
Resumo:
The FIREDASS (FIRE Detection And Suppression Simulation) project is concerned with the development of fine water mist systems as a possible replacement for the halon fire suppression system currently used in aircraft cargo holds. The project is funded by the European Commission, under the BRITE EURAM programme. The FIREDASS consortium is made up of a combination of Industrial, Academic, Research and Regulatory partners. As part of this programme of work, a computational model has been developed to help engineers optimise the design of the water mist suppression system. This computational model is based on Computational Fluid Dynamics (CFD) and is composed of the following components: fire model; mist model; two-phase radiation model; suppression model and detector/activation model. The fire model - developed by the University of Greenwich - uses prescribed release rates for heat and gaseous combustion products to represent the fire load. Typical release rates have been determined through experimentation conducted by SINTEF. The mist model - developed by the University of Greenwich - is a Lagrangian particle tracking procedure that is fully coupled to both the gas phase and the radiation field. The radiation model - developed by the National Technical University of Athens - is described using a six-flux radiation model. The suppression model - developed by SINTEF and the University of Greenwich - is based on an extinguishment crietrion that relies on oxygen concentration and temperature. The detector/ activation model - developed by Cerberus - allows the configuration of many different detector and mist configurations to be tested within the computational model. These sub-models have been integrated by the University of Greenwich into the FIREDASS software package. The model has been validated using data from the SINTEF/GEC test campaigns and it has been found that the computational model gives good agreement with these experimental results. The best agreement is obtained at the ceiling which is where the detectors and misting nozzles would be located in a real system. In this paper the model is briefly described and some results from the validation of the fire and mist model are presented.
Resumo:
Background: The role of temporary ovarian suppression with luteinizing hormone-releasing hormone agonists (LHRHa) in the prevention of chemotherapy-induced premature ovarian failure (POF) is still controversial. Our meta-analysis of randomized, controlled trials (RCTs) investigates whether the use of LHRHa during chemotherapy in premenopausal breast cancer patients reduces treatment-related POF rate, increases pregnancy rate, and impacts disease-free survival (DFS). Methods: A literature search using PubMed, Embase, and the Cochrane Library, and the proceedings of major conferences, was conducted up to 30 April 2015. Odds ratios (ORs) and 95% confidence intervals (CIs) for POF (i.e. POF by study definition, and POF defined as amenorrhea 1 year after chemotherapy completion) and for patients with pregnancy, as well hazard ratios (HRs) and 95% CI for DFS, were calculated for each trial. Pooled analysis was carried out using the fixed- and random-effects models. Results: A total of 12 RCTs were eligible including 1231 breast cancer patients. The use of LHRHa was associated with a significant reduced risk of POF (OR 0.36, 95% CI 0.23-0.57; P < 0.001), yet with significant heterogeneity (I2 = 47.1%, Pheterogeneity = 0.026). In eight studies reporting amenorrhea rates 1 year after chemotherapy completion, the addition of LHRHa reduced the risk of POF (OR 0.55, 95% CI 0.41-0.73, P < 0.001) without heterogeneity (I2 = 0.0%, Pheterogeneity = 0.936). In five studies reporting pregnancies, more patients treated with LHRHa achieved pregnancy (33 versus 19 women; OR 1.83, 95% CI 1.02-3.28, P = 0.041; I2 = 0.0%, Pheterogeneity = 0.629). In three studies reporting DFS, no difference was observed (HR 1.00, 95% CI 0.49-2.04, P = 0.939; I2 = 68.0%, Pheterogeneity = 0.044). Conclusion: Temporary ovarian suppression with LHRHa in young breast cancer patients is associated with a reduced risk of chemotherapy-induced POF and seems to increase the pregnancy rate, without an apparent negative consequence on prognosis.
Resumo:
Coronary heart disease is a major cause of morbidity and mortality worldwide. Percutaneous coronary intervention (PCI) has become the most widely used method of coronary artery revascularisation. The use of stents to hold open atherosclerosis induced arterial narrowing has significantly reduced elastic recoil and acute vessel occlusion following balloon angioplasty. However, bare metal stents have been associated with in-stent restenosis attributed to vascular smooth muscle cell (VSMC) hyperplasia and excessive neointimal formation. The resultant luminal renarrowing may manifest clinically with the return of symptoms such as chest pain or shortness of breath. The development of drug eluting stents has significantly reduced the incidence of in-stent restenosis (ISR). Unfortunately the antiproliferative medications used not only inhibit VSMC proliferation but also re-endothelialisation of the stented vessel. In addition, the drug impregnated polymer coating has been associated with a chronic inflammatory response within the vessel wall predisposing patients to stent thrombosis. Thus the identification of novel therapies which promote vessel healing without excessive proliferative or inflammatory response may improve long term outcome and reduce the need for repeated revascularisation. MicroRNAs (miRs) are short (18-25 nucleotide) non-coding RNAs acting to regulate gene expression. By binding to the 3’untranslated region of mRNA they act to fine tune gene expression either by mRNA degradation or translational repression. Originally identified in coordinating tissue development microRNAs have also been shown to play important roles coordinating the inflammatory response and in numerous cardiovascular diseases. MiR-21 has been identified in human atherosclerotic plaques, arteriosclerosis obliterans and abdominal aortic aneurysms. In addition, its up regulation has been documented in preclinical models of vascular injury. This study sought to identify the role of miR-21 in the development of ISR. Utilising a small animal model of stenting and in vitro techniques, we sought to investigate its influence upon VSMC and immune cell response following stenting. 19 The refinement of a murine stenting model within the Baker laboratory and the electrochemical dissolution of the metal stent from within harvested vascular tissues significantly improved the ability to perform detailed histological analysis. In addition, identification of miRNAs using in situ hybridisation was achieved for the first time within stented tissue. Neointimal formation and ISR was significantly reduced in mice in which miR-21 had been genetically deleted. In addition, neointimal composition was found to be altered in miR-21 KO mice with reductions in VSMC and elastin content demonstrated. Importantly, no difference in re-endothelialisation was observed. In vitro analysis demonstrated that VSMCs from miR-21 KO mice had both reduced proliferative and migratory capacity following platelet derived growth factor stimulation. Molecular analysis revealed that these differences may, at least in part, be due to de-repression of programmed cell death 4 (PDCD4). PDCD4 is a known miR-21 target within VSMCs implicated in the suppression of proliferation and promotion of apoptosis. Unfortunately, initial attempts at antimiR mediated knockdown of miR-21 in vivo, failed to produce a similar change in the suppression of ISR. Furthermore, a significant alteration in macrophage polarisation state within the neointima of miR-21 WT and KO mice was noted. Immunohistochemical staining revealed a preponderance of anti-inflammatory M2 macrophages in KO mice. Analysis of bone marrow derived macrophages from miR-21 KO mice demonstrated an increased level of the peroxisome proliferation activating receptor-γ (PPARγ) which facilitates M2 polarisation. Importantly, significant alterations in numerous pro-inflammatory cytokines, which also have mitogenic effects, were also found following genetic deletion of miR-21. In Summary, this is the first study to look at miRs in the development of ISR. MiR-21 plays an important role in the development of ISR by influencing the proliferative response of VSMCs and modulating the immune response following stent deployment. Further attempts to modulate miR-21 expression following PCI may reduce ISR and the need for repeat revascularisation while also reducing the risk of stent thrombosis.
Resumo:
Small-colony variants (SCVs) are commonly observed in evolution experiments and clinical isolates, being associated with antibiotic resistance and persistent infections. We recently observed the repeated emergence of Escherichia coli SCVs during adaptation to the interaction with macrophages. To identify the genetic targets underlying the emergence of this clinically relevant morphotype, we performed whole-genome sequencing of independently evolved SCV clones. We uncovered novel mutational targets, not previously associated with SCVs (e.g. cydA, pepP) and observed widespread functional parallelism. All SCV clones had mutations in genes related to the electron-transport chain. As SCVs emerged during adaptation to macrophages, and often show increased antibiotic resistance, we measured SCV fitness inside macrophages and measured their antibiotic resistance profiles. SCVs had a fitness advantage inside macrophages and showed increased aminoglycoside resistance in vitro, but had collateral sensitivity to other antibiotics (e.g. tetracycline). Importantly, we observed similar results in vivo. SCVs had a fitness advantage upon colonization of the mouse gut, which could be tuned by antibiotic treatment: kanamycin (aminoglycoside) increased SCV fitness, but tetracycline strongly reduced it. Our results highlight the power of using experimental evolution as the basis for identifying the causes and consequences of adaptation during host-microbe interactions.
Resumo:
Two field experiments were carried out in Taveuni, Fiji to study the effects of mucuna (Mucuna pruriens) and grass fallow systems at 6 and 12 month durations on changes in soil properties (Experiment 1) and taro yields (Experiment 2). Biomass accumulation of mucuna fallow crop was significantly higher (P<0.05) than grass fallow crop at both 6 and 12 month durations. The longer fallow duration resulted in higher (P<0.05) total soil organic carbon, total soil nitrogen and earthworm numbers regardless of fallow type. Weed suppression in taro grown under mucuna was significantly greater (P<0.05) than under natural grass fallow. Taro grown under mucuna fallow significantly outyielded taro grown under grass fallow (11.8 vs. 8.8 t ha-1). Also, the gross margin of taro grown under mucuna fallow was 52% higher than that of taro grown under grass fallow. © ISHS.
Resumo:
Résumé : Une dysrégulation de la lipolyse des tissus adipeux peut conduire à une surexposition des tissus non-adipeux aux acides gras non-estérifiés (AGNE), qui peut mener à un certain degré de lipotoxicité dans ces tissus. La lipotoxicité constitue, par ailleurs, l’une des causes majeures du développement de la résistance à l’insuline et du diabète de type 2. En plus de ses fonctions glucorégulatrices, l’insuline a pour fonction d’inhiber la lipolyse et donc de diminuer les niveaux d’AGNE en circulation, prévenant ainsi la lipotoxicité. Il n’y a pas d’étalon d’or pour mesurer la sensibilité de la lipolyse à l’insuline. Le clamp euglycémique hyperinsulinémique constitue la méthode étalon d’or pour évaluer la sensibilité du glucose à l’insuline mais il est aussi utilisé pour mesurer la suppression de la lipolyse par l’insuline. Par contre, cette méthode est couteuse et laborieuse, et ne peut pas s’appliquer à de grandes populations. Il existe aussi des indices pour estimer la fonction antilipolytique de l’insuline dérivés de l’hyperglycémie provoquée par voie orale (HGPO), un test moins dispendieux et plus simple à effectuer à grande échelle. Cette étude vise donc à : 1) Étudier la relation entre les indices de suppressibilité des AGNE par l’insuline dérivés du clamp et ceux dérivés de l’HGPO; et 2) Déterminer laquelle de ces mesures corrèle le mieux avec les facteurs connus comme étant reliés à la dysfonction adipeuse : paramètres anthropométriques et indices de dysfonction métabolique. Les résultats montrent que dans le groupe de sujets étudiés (n=29 femmes, 15 témoins saines et 14 femmes avec résistance à l’insuline car atteintes du syndrome des ovaires polykystiques), certains indices de sensibilité à l’insuline pour la lipolyse dérivés de l’HGPO corrèlent bien avec ceux dérivés du clamp euglycémique hyperinsulinémique. Parmi ces indices, celui qui corrèle le mieux avec les indices du clamp et les paramètres anthropométriques et de dysfonction adipeuse est le T50[indice inférieur AGNE] (temps nécessaire pour diminuer de 50% le taux de base – à jeun – des AGNE). Nos résultats suggèrent donc que l’HGPO, facile à réaliser, peut être utilisée pour évaluer la sensibilité de la lipolyse à l’insuline. Nous pensons que la lipo-résistance à l’insuline peut être facilement quantifiée en clinique humaine.
Resumo:
An experimental and numerical study of turbulent fire suppression is presented. For this work, a novel and canonical facility has been developed, featuring a buoyant, turbulent, methane or propane-fueled diffusion flame suppressed via either nitrogen dilution of the oxidizer or application of a fine water mist. Flames are stabilized on a slot burner surrounded by a co-flowing oxidizer, which allows controlled delivery of either suppressant to achieve a range of conditions from complete combustion through partial and total flame quenching. A minimal supply of pure oxygen is optionally applied along the burner to provide a strengthened flame base that resists liftoff extinction and permits the study of substantially weakened turbulent flames. The carefully designed facility features well-characterized inlet and boundary conditions that are especially amenable to numerical simulation. Non-intrusive diagnostics provide detailed measurements of suppression behavior, yielding insight into the governing suppression processes, and aiding the development and validation of advanced suppression models. Diagnostics include oxidizer composition analysis to determine suppression potential, flame imaging to quantify visible flame structure, luminous and radiative emissions measurements to assess sooting propensity and heat losses, and species-based calorimetry to evaluate global heat release and combustion efficiency. The studied flames experience notable suppression effects, including transition in color from bright yellow to dim blue, expansion in flame height and structural intermittency, and reduction in radiative heat emissions. Still, measurements indicate that the combustion efficiency remains close to unity, and only near the extinction limit do the flames experience an abrupt transition from nearly complete combustion to total extinguishment. Measurements are compared with large eddy simulation results obtained using the Fire Dynamics Simulator, an open-source computational fluid dynamics software package. Comparisons of experimental and simulated results are used to evaluate the performance of available models in predicting fire suppression. Simulations in the present configuration highlight the issue of spurious reignition that is permitted by the classical eddy-dissipation concept for modeling turbulent combustion. To address this issue, simple treatments to prevent spurious reignition are developed and implemented. Simulations incorporating these treatments are shown to produce excellent agreement with the experimentally measured data, including the global combustion efficiency.
Suppression of mucosal mastocytosis by infection with the intestinal nematode Nematospiroides dubius
Resumo:
T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+ T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.
Resumo:
Ultra-slow fluctuations (0.01-0.1 Hz) are a feature of intrinsic brain activity of as yet unclear origin. We propose a candidate mechanism based on retrograde endocannabinoid signaling in a synaptically coupled network of excitatory neurons. This is known to cause depolarization-induced suppression of excitation (DISE), which we model phenomenologically. We construct emergent network oscillations in a globally coupled network and show that for strong synaptic coupling DISE can lead to a synchronized population burst at the frequencies of resting brain rhythms.
Resumo:
Interaction between the complement system and carbon nanotubes (CNTs) can modify their intended biomedical applications. Pristine and derivatised CNTs can activate complement primarily via the classical pathway which enhances uptake of CNTs and suppresses pro-inflammatory response by immune cells. Here, we report that the interaction of C1q, the classical pathway recognition molecule, with CNTs involves charge pattern and classical pathway activation that is partly inhibited by factor H, a complement regulator. C1q and its globular modules, but not factor H, enhanced uptake of CNTs by macrophages and modulated the pro-inflammatory immune response. Thus, soluble complement factors can interact differentially with CNTs and alter the immune response even without complement activation. Coating CNTs with recombinant C1q globular heads offers a novel way of controlling classical pathway activation in nanotherapeutics. Surprisingly, the globular heads also enhance clearance by phagocytes and down-regulate inflammation, suggesting unexpected complexity in receptor interaction. From the Clinical Editor: Carbon nanotubes (CNTs) maybe useful in the clinical setting as targeting drug carriers. However, it is also well known that they can interact and activate the complement system, which may have a negative impact on the applicability of CNTs. In this study, the authors functionalized multi-walled CNT (MWNT), and investigated the interaction with the complement pathway. These studies are important so as to gain further understanding of the underlying mechanism in preparation for future use of CNTs in the clinical setting.