960 resultados para MUSCLE FUNCTIONAL MAGNETIC RESONANCE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The simultaneous recording of scalp electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can provide unique insights into the dynamics of human brain function, and the increased functional sensitivity offered by ultra-high field fMRI opens exciting perspectives for the future of this multimodal approach. However, simultaneous recordings are susceptible to various types of artifacts, many of which scale with magnetic field strength and can seriously compromise both EEG and fMRI data quality in recordings above 3T. The aim of the present study was to implement and characterize an optimized setup for simultaneous EEG-fMRI in humans at 7T. The effects of EEG cable length and geometry for signal transmission between the cap and amplifiers were assessed in a phantom model, with specific attention to noise contributions from the MR scanner coldheads. Cable shortening (down to 12cm from cap to amplifiers) and bundling effectively reduced environment noise by up to 84% in average power and 91% in inter-channel power variability. Subject safety was assessed and confirmed via numerical simulations of RF power distribution and temperature measurements on a phantom model, building on the limited existing literature at ultra-high field. MRI data degradation effects due to the EEG system were characterized via B0 and B1(+) field mapping on a human volunteer, demonstrating important, although not prohibitive, B1 disruption effects. With the optimized setup, simultaneous EEG-fMRI acquisitions were performed on 5 healthy volunteers undergoing two visual paradigms: an eyes-open/eyes-closed task, and a visual evoked potential (VEP) paradigm using reversing-checkerboard stimulation. EEG data exhibited clear occipital alpha modulation and average VEPs, respectively, with concomitant BOLD signal changes. On a single-trial level, alpha power variations could be observed with relative confidence on all trials; VEP detection was more limited, although statistically significant responses could be detected in more than 50% of trials for every subject. Overall, we conclude that the proposed setup is well suited for simultaneous EEG-fMRI at 7T.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dystonia is associated with impaired somatosensory ability. The electrophysiological method of repetitive transcranial magnetic stimulation (rTMS) can be used for noninvasive stimulation of the human cortex and can alter cortical excitability and associated behavior. Among others, rTMS can alter/improve somatosensory discrimation abilities, as shown in healthy controls. We applied 5Hz-rTMS over the left primary somatosensory cortex (S1) in 5 patients with right-sided writer's dystonia and 5 controls. We studied rTMS effects on tactile discrimination accuracy and concomitant rTMS-induced changes in hemodynamic activity measured by functional magnetic resonance imaging (fMRI). Before rTMS, patients performed worse on the discrimination task than controls even though fMRI showed greater task-related activation bilaterally in the basal ganglia (BG). In controls, rTMS led to improved discrimination; fMRI revealed this was associated with increased activity of the stimulated S1, bilateral premotor cortex and BG. In dystonia patients, rTMS had no effect on discrimination; fMRI showed similar cortical effects to controls except for no effects in BG. Improved discrimination after rTMS in controls is linked to enhanced activation of S1 and BG. Failure of rTMS to increase BG activation in dystonia may be associated with the lack of effect on sensory discrimination in this group and may reflect impaired processing in BG-S1 connections. Alternatively, the increased BG activation seen in the baseline state without rTMS may reflect a compensatory strategy that saturates a BG contribution to this task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional magnetic resonance imaging studies have indicated that efficient feature search (FS) and inefficient conjunction search (CS) activate partially distinct frontoparietal cortical networks. However, it remains a matter of debate whether the differences in these networks reflect differences in the early processing during FS and CS. In addition, the relationship between the differences in the networks and spatial shifts of attention also remains unknown. We examined these issues by applying a spatio-temporal analysis method to high-resolution visual event-related potentials (ERPs) and investigated how spatio-temporal activation patterns differ for FS and CS tasks. Within the first 450 msec after stimulus onset, scalp potential distributions (ERP maps) revealed 7 different electric field configurations for each search task. Configuration changes occurred simultaneously in the two tasks, suggesting that contributing processes were not significantly delayed in one task compared to the other. Despite this high spatial and temporal correlation, two ERP maps (120-190 and 250-300 msec) differed between the FS and CS. Lateralized distributions were observed only in the ERP map at 250-300 msec for the FS. This distribution corresponds to that previously described as the N2pc component (a negativity in the time range of the N2 complex over posterior electrodes of the hemisphere contralateral to the target hemifield), which has been associated with the focusing of attention onto potential target items in the search display. Thus, our results indicate that the cortical networks involved in feature and conjunction searching partially differ as early as 120 msec after stimulus onset and that the differences between the networks employed during the early stages of FS and CS are not necessarily caused by spatial attention shifts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional segmented echo planar imaging (3D-EPI) is a promising approach for high-resolution functional magnetic resonance imaging, as it provides an increased signal-to-noise ratio (SNR) at similar temporal resolution to traditional multislice 2D-EPI readouts. Recently, the 3D-EPI technique has become more frequently used and it is important to better understand its implications for fMRI. In this study, the temporal SNR characteristics of 3D-EPI with varying numbers of segments are studied. It is shown that, in humans, the temporal variance increases with the number of segments used to form the EPI acquisition and that for segmented acquisitions, the maximum available temporal SNR is reduced compared to single shot acquisitions. This reduction with increased segmentation is not found in phantom data and thus likely due to physiological processes. When operating in the thermal noise dominated regime, fMRI experiments with a motor task revealed that the 3D variant outperforms the 2D-EPI in terms of temporal SNR and sensitivity to detect activated brain regions. Thus, the theoretical SNR advantage of a segmented 3D-EPI sequence for fMRI only exists in a low SNR situation. However, other advantages of 3D-EPI, such as the application of parallel imaging techniques in two dimensions and the low specific absorption rate requirements, may encourage the use of the 3D-EPI sequence for fMRI in situations with higher SNR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the University Medical Center, Swiss, from 2010 to 2012. Abundant evidence suggests that negative emotional stimuli are prioritized in the perceptual systems, eliciting enhanced neural responses in early sensory regions as compared with neutral information. This facilitated detection is generally paralleled by larger neural responses in early sensory areas, relative to the processing of neutral information. In this sense, the amygdala and other limbic regions, such as the orbitofrontal cortex, may play a critical role by sending modulatory projections onto the sensory cortices via direct or indirect feedback.The present project aimed at investigating two important issues regarding these mechanisms of emotional attention, by means of functional magnetic resonance imaging. In Study I, we examined the modulatory effects of visual emotion signals on the processing of task-irrelevant visual, auditory, and somatosensory input, that is, the intramodal and crossmodal effects of emotional attention. We observed that brain responses to auditory and tactile stimulation were enhanced during the processing of visual emotional stimuli, as compared to neutral, in bilateral primary auditory and somatosensory cortices, respectively. However, brain responses to visual task-irrelevant stimulation were diminished in left primary and secondary visual cortices in the same conditions. The results also suggested the existence of a multimodal network associated with emotional attention, presumably involving mediofrontal, temporal and orbitofrontal regions Finally, Study II examined the different brain responses along the low-level visual pathways and limbic regions, as a function of the number of retinal spikes during visual emotional processing. The experiment used stimuli resulting from an algorithm that simulates how the visual system perceives a visual input after a given number of retinal spikes. The results validated the visual model in human subjects and suggested differential emotional responses in the amygdala and visual regions as a function of spike-levels. A list of publications resulting from work in the host laboratory is included in the report.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the University Medical Center, Swiss, from 2010 to 2012. Abundant evidence suggests that negative emotional stimuli are prioritized in the perceptual systems, eliciting enhanced neural responses in early sensory regions as compared with neutral information. This facilitated detection is generally paralleled by larger neural responses in early sensory areas, relative to the processing of neutral information. In this sense, the amygdala and other limbic regions, such as the orbitofrontal cortex, may play a critical role by sending modulatory projections onto the sensory cortices via direct or indirect feedback.The present project aimed at investigating two important issues regarding these mechanisms of emotional attention, by means of functional magnetic resonance imaging. In Study I, we examined the modulatory effects of visual emotion signals on the processing of task-irrelevant visual, auditory, and somatosensory input, that is, the intramodal and crossmodal effects of emotional attention. We observed that brain responses to auditory and tactile stimulation were enhanced during the processing of visual emotional stimuli, as compared to neutral, in bilateral primary auditory and somatosensory cortices, respectively. However, brain responses to visual task-irrelevant stimulation were diminished in left primary and secondary visual cortices in the same conditions. The results also suggested the existence of a multimodal network associated with emotional attention, presumably involving mediofrontal, temporal and orbitofrontal regions Finally, Study II examined the different brain responses along the low-level visual pathways and limbic regions, as a function of the number of retinal spikes during visual emotional processing. The experiment used stimuli resulting from an algorithm that simulates how the visual system perceives a visual input after a given number of retinal spikes. The results validated the visual model in human subjects and suggested differential emotional responses in the amygdala and visual regions as a function of spike-levels. A list of publications resulting from work in the host laboratory is included in the report.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signals detected with functional brain imaging techniques are based on the coupling of neuronal activity with energy metabolism. Techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) allow the visualization of brain areas that are activated by a variety of sensory, motor or cognitive tasks. Despite the technological sophistication of these brain imaging techniques, the precise mechanisms and cell types involved in coupling and in generating metabolic signals are still debated. Recent experimental data on the cellular and molecular mechanisms that underlie the fluorodeoxyglucose (FDG) - based PET imaging point to a critical role of a particular brain cell type, the astrocytes, in coupling neuronal activity to glucose utilization. Indeed, astrocytes possess receptors and re-uptake sites for a variety of neurotransmitters, including glutamate, the predominant excitatory neurotransmitter in the brain, In addition, astrocytic end-feet, which surround capillaries, are enriched in the specific glucose transporter GLUT-1. These features allow astrocytes to "sense" synaptic activity and to couple it with energy metabolism. In vivo and in vitro data support the following functional model: in response to glutamate released by active neurons, glucose is predominantly taken up by astrocytic end-feet; glucose is then metabolized to lactate which provides a preferred energy substrate for neurons. These data support the notion that astrocytes markedly contribute to the FDG-PET signal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The amygdala, hippocampus, medial prefrontal cortex (mPFC) and brain-stem subregions are implicated in fear conditioning and extinction, and are brain regions known to be sexually dimorphic. We used functional magnetic resonance imaging (fMRI) to investigate sex differences in brain activity in these regions during fear conditioning and extinction. METHODS: Subjects were 12 healthy men comparable to 12 healthy women who underwent a 2-day experiment in a 3 T MR scanner. Fear conditioning and extinction learning occurred on day 1 and extinction recall occurred on day 2. The conditioned stimuli were visual cues and the unconditioned stimulus was a mild electric shock. Skin conductance responses (SCR) were recorded throughout the experiment as an index of the conditioned response. fMRI data (blood-oxygen-level-dependent [BOLD] signal changes) were analyzed using SPM8. RESULTS: Findings showed no significant sex differences in SCR during any experimental phases. However, during fear conditioning, there were significantly greater BOLD-signal changes in the right amygdala, right rostral anterior cingulate (rACC) and dorsal anterior cingulate cortex (dACC) in women compared with men. In contrast, men showed significantly greater signal changes in bilateral rACC during extinction recall. CONCLUSIONS: These results indicate sex differences in brain activation within the fear circuitry of healthy subjects despite similar peripheral autonomic responses. Furthermore, we found that regions where sex differences were previously reported in response to stress, also exhibited sex differences during fear conditioning and extinction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Repetition of environmental sounds, like their visual counterparts, can facilitate behavior and modulate neural responses, exemplifying plasticity in how auditory objects are represented or accessed. It remains controversial whether such repetition priming/suppression involves solely plasticity based on acoustic features and/or also access to semantic features. To evaluate contributions of physical and semantic features in eliciting repetition-induced plasticity, the present functional magnetic resonance imaging (fMRI) study repeated either identical or different exemplars of the initially presented object; reasoning that identical exemplars share both physical and semantic features, whereas different exemplars share only semantic features. Participants performed a living/man-made categorization task while being scanned at 3T. Repeated stimuli of both types significantly facilitated reaction times versus initial presentations, demonstrating perceptual and semantic repetition priming. There was also repetition suppression of fMRI activity within overlapping temporal, premotor, and prefrontal regions of the auditory "what" pathway. Importantly, the magnitude of suppression effects was equivalent for both physically identical and semantically related exemplars. That the degree of repetition suppression was irrespective of whether or not both perceptual and semantic information was repeated is suggestive of a degree of acoustically independent semantic analysis in how object representations are maintained and retrieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Language processing abnormalities and inhibition difficulties are hallmark features of schizophrenia. The objective of this study is to asses the blood oxygenation level-dependent (BOLD) response at two different stages of the illness and compare the frontal activity between adolescents and adults with schizophrenia. Methods: 10 adults with schizophrenia (mean age 31,5 years) and 6 psychotic adolescents with schizophrenic symptoms (mean age 16,2 years) underwent functional magnetic resonance imaging while performing two frontal tasks. Regional activation is compared in the bilateral frontal areas during a covert verbal fluency task (letter version) and a Stroop task (inhibition task). Results: Preliminary results show poorer task performance and less frontal cortex activation during both tasks in the adult group of patients with schizophrenia. In the adolescent patients group, fMRI analysis show significant and larger activity in the left frontal operculum (Broca's area) in the verbal fluency task and greater activity in the medium cingulate during the inhibition phase of the Stroop task. Conclusions: These preliminary findings suggest a decrease of frontal activity in the course of the illness. We assume that schizophrenia contributes to frontal brain activity reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whether different brain networks are involved in generating unimanual responses to a simple visual stimulus presented in the ipsilateral versus contralateral hemifield remains a controversial issue. Visuo-motor routing was investigated with event-related functional magnetic resonance imaging (fMRI) using the Poffenberger reaction time task. A 2 hemifield x 2 response hand design generated the "crossed" and "uncrossed" conditions, describing the spatial relation between these factors. Both conditions, with responses executed by the left or right hand, showed a similar spatial pattern of activated areas, including striate and extrastriate areas bilaterally, SMA, and M1 contralateral to the responding hand. These results demonstrated that visual information is processed bilaterally in striate and extrastriate visual areas, even in the "uncrossed" condition. Additional analyses based on sorting data according to subjects' reaction times revealed differential crossed versus uncrossed activity only for the slowest trials, with response strength in infero-temporal cortices significantly correlating with crossed-uncrossed differences (CUD) in reaction times. Collectively, the data favor a parallel, distributed model of brain activation. The presence of interhemispheric interactions and its consequent bilateral activity is not determined by the crossed anatomic projections of the primary visual and motor pathways. Distinct visuo-motor networks need not be engaged to mediate behavioral responses for the crossed visual field/response hand condition. While anatomical connectivity heavily influences the spatial pattern of activated visuo-motor pathways, behavioral and functional parameters appear to also affect the strength and dynamics of responses within these pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual perception of body motion is vital for everyday activities such as social interaction, motor learning or car driving. Tumors to the left lateral cerebellum impair visual perception of body motion. However, compensatory potential after cerebellar damage and underlying neural mechanisms remain unknown. In the present study, visual sensitivity to point-light body motion was psychophysically assessed in patient SL with dysplastic gangliocytoma (Lhermitte-Duclos disease) to the left cerebellum before and after neurosurgery, and in a group of healthy matched controls. Brain activity during processing of body motion was assessed by functional magnetic resonance imaging (MRI). Alterations in underlying cerebro-cerebellar circuitry were studied by psychophysiological interaction (PPI) analysis. Visual sensitivity to body motion in patient SL before neurosurgery was substantially lower than in controls, with significant improvement after neurosurgery. Functional MRI in patient SL revealed a similar pattern of cerebellar activation during biological motion processing as in healthy participants, but located more medially, in the left cerebellar lobules III and IX. As in normalcy, PPI analysis showed cerebellar communication with a region in the superior temporal sulcus, but located more anteriorly. The findings demonstrate a potential for recovery of visual body motion processing after cerebellar damage, likely mediated by topographic shifts within the corresponding cerebro-cerebellar circuitry induced by cerebellar reorganization. The outcome is of importance for further understanding of cerebellar plasticity and neural circuits underpinning visual social cognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Human experience takes place in the line of mental-time (MT) created through imagination of oneself in different time-points in past or future (self-projection in time). Here we manipulated self-projection in MT not only with respect to one's life-events but also with respect to one's faces from different past and future time-points. Methods: We here compared MTT with respect to one's facial images from different time points in past and future (study 1: MT-faces) as well as with respect to different past and future life events (study 2: MT-events). Participants were asked to make judgments about past and future face images and past and future events from three different time-points: the present (Now), eight years earlier (Past) or eight years later (Future). In addition, as a control task participants were asked to make recognition judgments with respect to faces and memory-related judgments with respect to events without changing their habitual self-location in time. Behavioral measures and functional magnetic resonance imaging (fMRI) activity after subtraction of recognition and memory related activities show both absolute MT and relative MT effects for faces and events, signifying a fundamental brain mechanism of MT, disentangled from episodic memory functions. Results: Behavioural and event-related fMRI activity showed three independent effects characterized by (1) similarity between past recollection and future imagination, (2) facilitation of judgments related to the future as compared to the past, and (3) facilitation of judgments related to time-points distant from the present. These effects were found with respect to faces and events suggesting that the brain mechanisms of MT are independent of whether actual life episodes have to be re-/pre-experienced and recruited a common cerebral network including the medial-temporal, precuneus, inferior-frontal, temporo-parietal, and insular cortices. Conclusions: These behavioural and neural data suggest that self-projection in time is a crucial aspect of MT, relying on neural structures encoding memory, mental imagery, and self. Furthermore our results emphasize the idea that mental temporal processing is more strongly directed to future prediction than to past recollection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the early days of functional magnetic resonance imaging (fMRI), retinotopic mapping emerged as a powerful and widely-accepted tool, allowing the identification of individual visual cortical fields and furthering the study of visual processing. In contrast, tonotopic mapping in auditory cortex proved more challenging primarily because of the smaller size of auditory cortical fields. The spatial resolution capabilities of fMRI have since advanced, and recent reports from our labs and several others demonstrate the reliability of tonotopic mapping in human auditory cortex. Here we review the wide range of stimulus procedures and analysis methods that have been used to successfully map tonotopy in human auditory cortex. We point out that recent studies provide a remarkably consistent view of human tonotopic organisation, although the interpretation of the maps continues to vary. In particular, there remains controversy over the exact orientation of the primary gradients with respect to Heschl's gyrus, which leads to different predictions about the location of human A1, R, and surrounding fields. We discuss the development of this debate and argue that literature is converging towards an interpretation that core fields A1 and R fold across the rostral and caudal banks of Heschl's gyrus, with tonotopic gradients laid out in a distinctive V-shaped manner. This suggests an organisation that is largely homologous with non-human primates. This article is part of a Special Issue entitled Human Auditory Neuroimaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé: Les récents progrès techniques de l'imagerie cérébrale non invasives ont permis d'améliorer la compréhension des différents systèmes fonctionnels cérébraux. Les approches multimodales sont devenues indispensables en recherche, afin d'étudier dans sa globalité les différentes caractéristiques de l'activité neuronale qui sont à la base du fonctionnement cérébral. Dans cette étude combinée d'imagerie par résonance magnétique fonctionnelle (IRMf) et d'électroencéphalographie (EEG), nous avons exploité le potentiel de chacune d'elles, soit respectivement la résolution spatiale et temporelle élevée. Les processus cognitifs, de perception et de mouvement nécessitent le recrutement d'ensembles neuronaux. Dans la première partie de cette thèse nous étudions, grâce à la combinaison des techniques IRMf et EEG, la réponse des aires visuelles lors d'une stimulation qui demande le regroupement d'éléments cohérents appartenant aux deux hémi-champs visuels pour en faire une seule image. Nous utilisons une mesure de synchronisation (EEG de cohérence) comme quantification de l'intégration spatiale inter-hémisphérique et la réponse BOLD (Blood Oxygenation Level Dependent) pour évaluer l'activité cérébrale qui en résulte. L'augmentation de la cohérence de l'EEG dans la bande beta-gamma mesurée au niveau des électrodes occipitales et sa corrélation linéaire avec la réponse BOLD dans les aires de VP/V4, reflète et visualise un ensemble neuronal synchronisé qui est vraisemblablement impliqué dans le regroupement spatial visuel. Ces résultats nous ont permis d'étendre la recherche à l'étude de l'impact que le contenu en fréquence des stimuli a sur la synchronisation. Avec la même approche, nous avons donc identifié les réseaux qui montrent une sensibilité différente à l'intégration des caractéristiques globales ou détaillées des images. En particulier, les données montrent que l'implication des réseaux visuels ventral et dorsal est modulée par le contenu en fréquence des stimuli. Dans la deuxième partie nous avons a testé l'hypothèse que l'augmentation de l'activité cérébrale pendant le processus de regroupement inter-hémisphérique dépend de l'activité des axones calleux qui relient les aires visuelles. Comme le Corps Calleux présente une maturation progressive pendant les deux premières décennies, nous avons analysé le développement de la fonction d'intégration spatiale chez des enfants âgés de 7 à 13 ans et le rôle de la myelinisation des fibres calleuses dans la maturation de l'activité visuelle. Nous avons combiné l'IRMf et la technique de MTI (Magnetization Transfer Imaging) afin de suivre les signes de maturation cérébrale respectivement sous l'aspect fonctionnel et morphologique (myelinisation). Chez lés enfants, les activations associées au processus d'intégration entre les hémi-champs visuels sont, comme chez l'adulte, localisées dans le réseau ventral mais se limitent à une zone plus restreinte. La forte corrélation que le signal BOLD montre avec la myelinisation des fibres du splenium est le signe de la dépendance entre la maturation des fonctions visuelles de haut niveau et celle des connections cortico-corticales. Abstract: Recent advances in non-invasive brain imaging allow the visualization of the different aspects of complex brain dynamics. The approaches based on a combination of imaging techniques facilitate the investigation and the link of multiple aspects of information processing. They are getting a leading tool for understanding the neural basis of various brain functions. Perception, motion, and cognition involve the formation of cooperative neuronal assemblies distributed over the cerebral cortex. In this research, we explore the characteristics of interhemispheric assemblies in the visual brain by taking advantage of the complementary characteristics provided by EEG (electroencephalography) and fMRI (Functional Magnetic Resonance Imaging) techniques. These are the high temporal resolution for EEG and high spatial resolution for fMRI. In the first part of this thesis we investigate the response of the visual areas to the interhemispheric perceptual grouping task. We use EEG coherence as a measure of synchronization and BOLD (Blood Oxygenar tion Level Dependent) response as a measure of the related brain activation. The increase of the interhemispheric EEG coherence restricted to the occipital electrodes and to the EEG beta band and its linear relation to the BOLD responses in VP/V4 area points to a trans-hemispheric synchronous neuronal assembly involved in early perceptual grouping. This result encouraged us to explore the formation of synchronous trans-hemispheric networks induced by the stimuli of various spatial frequencies with this multimodal approach. We have found the involvement of ventral and medio-dorsal visual networks modulated by the spatial frequency content of the stimulus. Thus, based on the combination of EEG coherence and fMRI BOLD data, we have identified visual networks with different sensitivity to integrating low vs. high spatial frequencies. In the second part of this work we test the hypothesis that the increase of brain activity during perceptual grouping depends on the activity of callosal axons interconnecting the visual areas that are involved. To this end, in children of 7-13 years, we investigated functional (functional activation with fMRI) and morphological (myelination of the corpus callosum with Magnetization Transfer Imaging (MTI)) aspects of spatial integration. In children, the activation associated with the spatial integration across visual fields was localized in visual ventral stream and limited to a part of the area activated in adults. The strong correlation between individual BOLD responses in .this area and the myelination of the splenial system of fibers points to myelination as a significant factor in the development of the spatial integration ability.