959 resultados para MATERIALS SCIENCE - Radiation Effects
Resumo:
In this study was developed a new nano drug delivery system (NDDS) based on association of biodegradable surfactants with biocompatible magnetic fluid of maguemita citrate derivative. This formulation consists in a magnetic emulsion with nanostructured colloidal particles. Preliminary in vitro experiments showed that the formulation presents a great potential for synergic application in the topical release of photosensitizer drug (PS) and excellent target tissue properties in the photodynamic therapy (PDT) combined with hyperthermia (HPT) protocols. The physical chemistry characterization and in vitro assays were carried out by Zn(II) Phtalocyanine (ZnPc) photosensitizer incorporated into NDDS in the absence and the presence of magnetic fluid, showed good results and high biocompatibility. In vitro experiments were accomplished by tape-stripping protocols for quanti. cation of drug association with different skin tissue layers. This technique is a classical method for analyses of drug release in stratum corneum and epidermis+ dermis skin layers. The NDDS formulations were applied directly in pig skin (tissue model) fixed in the cell`s Franz device with receptor medium container with a PBS/EtOH 20% solution (10mM, pH 7.4) at 37 degrees C. After 12 h of topical administration stratum corneum was removed from fifty tapes and the ZnPc retained was evaluated by solvent extraction in dimetil-sulphoxide under ultrasonic bath. These results indicated that magnetic nanoemulsion (MNE) increase the drug release on the deeper skin layers when compared with classical formulation in the absence of magnetic particles. This could be related with the increase of biocompatibility of NDDS due to the great affinity for the polar extracelullar matrix in the skin and also for the increase in the drug partition inside of corneocites wall. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work we evaluated the photophysical and in vitro properties of Foscan (R), a second-generation photosensitizer drug (PS) widely used in systemic clinical protocols for cancer therapy based on Photodynamic Therapy (PDT). We employed biodegradable nanoemulsions (NE) as a colloidal vehicle of the oil/water (o/w) type focusing in topical administration of Foscan (R) and other photosensitizer drugs. This formulation was obtained and stabilized by the methodology described by Tabosa do Egito et al.,(30) based on the mixture of two phases: an aqueous solution and an organic medium consisting of nonionic surfactants and oil. The photodynamic potential of the drug incorporated into the NE was studied by steady-state and time-resolved spectroscopic techniques. We also analyzed the in vitro biological behavior carried out in mimetic biological environment protocols based on the animal model. After topical application in a skin animal model, we evaluated the Foscan (R)/NE diffusion flux into the skin layers (stratum corneum and epidermis + dermis) by classical procedures using Franz Diffusion cells. Our results showed that the photophysical properties of PS were maintained after its incorporation into the NE when compared with homogeneous organic medium. The in vitro assays enabled the determination of an adequate profile for the interaction of this system in the different skin layers, with an ideal time lag of 6 h after topical administration in the skin model. The Foscan (R) diffusion flux (J) was increased when this PS was incorporated into the NE, if compared with its flux in physiological medium. These parameters demonstrated that the NE can be potentially applied as a drug delivery system (DDS) for Foscan (R) in both in vitro and in vivo assays, as well as in future clinical applications involving topical skin cancer PDT.
Resumo:
Formation of a normal (not temporary) W/O/W multiple emulsion via the one-step method as a result of the simultaneous occurrence of catastrophic and transitional phase inversion processes has been recently reported. Critical features of this process include the emulsification temperature (corresponding to the ultralow surface tension point), the use of a specific nonionic surfactant blend and the surfactant blend/oil phase ratio, and the addition of the surfactant blend to the oil phase. The purpose of this study was to investigate physicochemical properties in an effort to gain a mechanistic understanding of the formation of these emulsions. Bulk, surface, and interfacial theological properties of adsorbed nonionic surfactant (CremophorRH40 and Span80) films were investigated under conditions known to affect W/O/W emulsion formation. Bulk viscosity results demonstrated that CremophorRH40 has a higher mobility in oil compared than in water, explaining the significance of the solvent phase. In addition, the bulk viscosity profile of aqueous solutions containing CremophorRH40 indicated a phase transition at around 78 +/- 2 degrees C, which is in agreement with cubic phase formation in the Winsor III region. The similarity in the interfacial elasticity values of CremophorRH40 and Span80 indicated that canola oil has a major effect on surface activity, showing the significance of vegetable oil. The highest interfacial shear elasticity and viscosity were observed when both surfactants were added to the oil phase, indicating the importance of the microstructural arrangement. CremophorRH40/Span80 complexes tended to desorb from the solution/solution interface with increasing temperature, indicating surfactant phase formation as is theoretically predicted in the Winsor III region. Together these interfacial and bulk rheology data demonstrate that one-step W/O/W emulsions form as a result of the simultaneous occurrence of phase-transition processes in the Winsor III region and explain the critical formulation and processing parameters necessary to achieve the formation of these normal W/O/W emulsions.
Resumo:
A novel method of preparation of water-in-oil-in-micelle-containing water (W/O/W(m)) Multiple emulsions using the one-step emulsification method is reported. These multiple emulsions were normal (not temporary) and stable over a 60 day test period. Previously, reported multiple emulsion by the one-step method were abnormal systems that formed at the inversion point of simple emulsion (where there is an incompatibility in the Ostwald and Bancroft theories, and typically these are O/W/O systems). Pseudoternary phase diagrams and bidimensional process-composition (phase inversion) maps were constructed to assist in process and composition optimization. The surfactants used were PEG40 hydrogenated castor oil and sorbitan oleate, and mineral and vegetables oils were investigated. Physicochemical characterization studies showed experimentally, for the First time, the significance of the ultralow surface tension point oil multiple emulsion formation by one-step via phase inversion processes. Although the significance of ultralow surface tension has been speculated previously, to the best of our knowledge, this is the first experimental confirmation. The multiple emulsion system reported here was dependent not only upon the emulsification temperature, but also upon the component ratios, therefore both the emulsion phase inversion and the phase inversion temperature were considered to fully explain their formation. Accordingly, it is hypothesized that the formation of these normal multiple emulsions is not a result of a temporary incompatibility (at the inversion point) during simple emulsion preparation, as previously reported. Rather, these normal W/O/W(m) emulsions are a result of the simultaneous occurrence of catastrophic and transitional phase inversion processes. The formation of the primary emulsions (W/O) is in accordance with the Ostwald theory and the formation of the multiple emulsions (W/O/W(m)) is in agreement with the Bancroft theory.
Resumo:
This study reports on the preparation, characterization and in vitro toxicity test of a new nano-drug delivery system (NDDS) based on bovine serum albumin (BSA) nanospheres which incorporates surface-functionalized magnetic nanoparticles (MNP) and/or the silicon(IV) phthalocyanine (NzPc). The new NDDS was engineered for use in photodynamic therapy (PDT) combined with hyperthermia (HPT) to address cancer treatment. The BSA-based nanospheres, hosting NzPc, MNP or both (NzPc and MNP), present spherical shape with hydrodynamic average diameter values ranging from 170 to 450 nm and zeta potential of around -23 mV. No difference on the fluorescence spectrum of the encapsulated NzPc was found regardless of the presence of MNP. Time-dependent fluorescence measurements of the encapsulated NzPc revealed a bi-exponential decay for samples incorporating only NzPc and NzPc plus MNP, in the time window ranging from 1.70 to 5.20 ns. The in vitro assay, using human fibroblasts, revealed no cytotoxic effect in all samples investigated, demonstrating the potential of the tested system as a synergistic NDDS. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Strong photoluminescent emission has been obtained from 3 nm PbS nanocrystals in aqueous colloidal solution, following treatment with CdS precursors. The observed emission can extend across the entire visible spectrum and usually includes a peak near 1.95 eV. We show that much of the visible emission results from absorption by higher-lying excited states above 3.0 eV with subsequent relaxation to and emission from states lying above the observed band-edge of the PbS nanocrystals. The fluorescent lifetimes for this emission are in the nanosecond regime, characteristic of exciton recombination.
Resumo:
Effective surface passivation of lead sulfide (PbS) nanocrystals (NCs) in an aqueous colloidal solution has been achieved following treatment with CdS precursors. The resultant photoluminescent emission displays two distinct components, one originating from the absorption band edge and the other from above the absorption band edge. We show that both of these components are strongly polarized but display distinctly different behaviours. The polarization arising from the band edge shows little dependence on the excitation energy while the polarization of the above-band-edge component is strongly dependent on the excitation energy. In addition, time-resolved polarization spectroscopy reveals that the above-band-edge polarization is restricted to the first couple of nanoseconds, while the band edge polarization is nearly constant over hundreds of nanoseconds. We recognize an incompatibility between the two different polarization behaviours, which enables us to identify two distinct types of surface-passivated PbS NC.
Resumo:
The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.
Resumo:
This paper presents the recent finding by Muhlhaus et al [1] that bifurcation of crack growth patterns exists for arrays of two-dimensional cracks. This bifurcation is a result of the nonlinear effect due to crack interaction, which is, in the present analysis, approximated by the dipole asymptotic or pseudo-traction method. The nonlinear parameter for the problem is the crack length/ spacing ratio lambda = a/h. For parallel and edge crack arrays under far field tension, uniform crack growth patterns (all cracks having same size) yield to nonuniform crack growth patterns (i.e. bifurcation) if lambda is larger than a critical value lambda(cr) (note that such bifurcation is not found for collinear crack arrays). For parallel and edge crack arrays respectively, the value of lambda(cr) decreases monotonically from (2/9)(1/2) and (2/15.096)(1/2) for arrays of 2 cracks, to (2/3)(1/2)/pi and (2/5.032)(1/2)/pi for infinite arrays of cracks. The critical parameter lambda(cr) is calculated numerically for arrays of up to 100 cracks, whilst discrete Fourier transform is used to obtain the exact solution of lambda(cr) for infinite crack arrays. For geomaterials, bifurcation can also occurs when array of sliding cracks are under compression.
Resumo:
In this paper, a progressive asymptotic approach procedure is presented for solving the steady-state Horton-Rogers-Lapwood problem in a fluid-saturated porous medium. The Horton-Rogers-Lapwood problem possesses a bifurcation and, therefore, makes the direct use of conventional finite element methods difficult. Even if the Rayleigh number is high enough to drive the occurrence of natural convection in a fluid-saturated porous medium, the conventional methods will often produce a trivial non-convective solution. This difficulty can be overcome using the progressive asymptotic approach procedure associated with the finite element method. The method considers a series of modified Horton-Rogers-Lapwood problems in which gravity is assumed to tilt a small angle away from vertical. The main idea behind the progressive asymptotic approach procedure is that through solving a sequence of such modified problems with decreasing tilt, an accurate non-zero velocity solution to the Horton-Rogers-Lapwood problem can be obtained. This solution provides a very good initial prediction for the solution to the original Horton-Rogers-Lapwood problem so that the non-zero velocity solution can be successfully obtained when the tilted angle is set to zero. Comparison of numerical solutions with analytical ones to a benchmark problem of any rectangular geometry has demonstrated the usefulness of the present progressive asymptotic approach procedure. Finally, the procedure has been used to investigate the effect of basin shapes on natural convection of pore-fluid in a porous medium. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
The stress corrosion cracking (SCC) initiation process for 4340 high strength steel in distilled water at room temperature was studied using a new kind of instrument: an environmental scanning electron microscope (ESEM). It was found that the applied stress accelerated oxide film formation which has an important influence on the subsequent SCC initiation. SCC was observed to initiate in the following circumstances: (1) cracking of a thick oxide film leading to SCC initiation along metal grain boundaries, (2) the initiation of pits initiating SCC in the metal and (3) SCC initiating from the edge of the specimen. All these three SCC initiation circumstances are consistent with the following model which couples SCC initiation with cracking of a surface protective oxide. There is a dynamic interaction between oxide formation, the applied stress, oxide cracking, pitting and the initiation of SCC. An aspect of the dynamic interaction is cracks forming in a protective surface oxide because of the applied stress, exposing to the water bare metal at the oxide crack tip, and oxidation of the bare metal causing crack healing. Oxide crack healing would be competing with the initiation of intergranular SCC if an oxide crack meets the metal surface at a grain boundary. If the intergranular SCC penetration is sufficiently fast along the metal grain boundary, then the crack yaws open preventing healing of the oxide crack. If intergranular SCC penetration is not sufficiently fast, then the oxidation process could produce sufficient oxide to fill both the stress corrosion crack and the oxide crack; in this case there would be initiation of SCC but only limited propagation of SCC. Stress-induced cracks in very thin oxide can induce pits which initiate SCC, and under some conditions such stress induced cracks in a thin oxide can directly initiate SCC.
Resumo:
Fracture mechanics tests were carried out for AerMet 100 in distilled water and NaCl (3.5 and 35 gl(-1)). The initiation period at higher values of the stress intensity factor indicated that load application in the stress corrosion cracking (SCC) environment is a necessary but not sufficient factor for SCC and that time is needed for some other factor (e.g., the local hydrogen concentration) to reach an appropriate value. The threshold stress intensity factor, K-ISSC, was found to increase with decreasing NaCl concentration. The plateau stress corrosion crack velocity was 2 x 10(-8) ms(-1) for NaCl (3.5 and 35 gl(-1)). The fracture mode was transgranular with small areas of an intergranular nature. (C) 1998 Chapman & Hall.
Resumo:
This paper reports the application of linearly increasing stress testing (LIST) to the study of stress corrosion cracking (SCC) of carbon steel in 4 N NaNO3 and in Bayer liquor. LIST is similar to the constant extension-rate testing (CERT) methodology with the essential difference that the LIST is load controlled whereas the CERT is displacement controlled. The main conclusion is that LIST is suitable for the study of the SCC of carbon steels in 4 N NaNO3 and in Bayer liquor. The low crack velocity in Bayer liquor and a measured maximum stress close to that of the reference specimen in air both indicate that a low applied stress rate is required to study SCC in this system. (C) 1998 Chapman & Hall.
Resumo:
The electrochemical behaviour of magnesium was studied in representative chloride and sulphate solutions including NaCl, Na2SO4, NaOH and their mixed solutions, HCl, and H2SO4: (1) by measuring electrochemical polarisation curves, (2) by using electrochemical impedance spectroscopy (EIS), and (3) by simultaneous measurement of hydrogen gas evolution and measurement of magnesium dissolution rates using inductively coupled plasma atomic emission spectrophotometry (ICPEAS). These experiments showed that a partially protective surface film played an important role in the dissolution of magnesium in chloride and sulphate solutions. Furthermore, the experimental data were consistent with the involvement of the intermediate species Mg+ in magnesium dissolution at film imperfections or on a film-free surface. At such sites, magnesium first oxidised electrochemically to the intermediate species Mg+, and then the intermediate species chemically reacted with water to produce hydrogen and Mg2+. The presence of Cl- ions increased the film free area, and accelerated the electrochemical reaction rate from magnesium metal to Mg+. (C) 1997 Elsevier Science Ltd.
Resumo:
This paper presents a theoretical and experimental investigation into the oxidation reactions of Si3N4-bonded SiC ceramics. Such ceramics which contain a small amount of silicon offer increased oxidation and wear resistance and are widely used as lining refractories in blast furnaces. The thermodynamics of oxidation reactions were studied using the JANAF tables. The weight gain was measured using a thermogravimetric analysis technique to study the kinetics. The temperature range of oxidation measurements is from 1073 to 1573 K and the oxidation atmosphere is water vapour, pure CO and CO-CO2 gas mixtures with various CO-to-CO2 ratios. Thermodynamic simulations showed that the oxidation mechanism of Si3N4-bonded SiC ceramics is passive oxidation and all components contribute to the formation of a silica film. The activated energies of the reactions follow the sequence Si3N4>SiC>Si. The kinetic study revealed that the oxidation of Si3N4-bonded SiC ceramics occurred in a mixed regime controlled by both interface reaction and diffusion through the silica film. Under the atmosphere conditions prevailing in the blast furnace, this ceramic is predicted to be passively oxidized with the chemical reaction rate becoming more dominant as the CO concentration increases. (C) 1998 Chapman & Hall.