880 resultados para MALARIA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A description of Anopheles (Cellia) irenicus Schmidt, sp.n. (formerly A. farauti No. 7) is provided. This species is one of six recorded from the Solomon Islands within the A. punctulatus group, which contains the major vectors of the causative agents of malaria and lymphatic filariasis in the southwest Pacific. Morphological markers are described for adult females, fourth-instar larvae and pupae that identify most specimens of A. irenicus. Keys are presented to distinguish members of the A. punctulatus group in the Solomon Islands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study was a comparison of bioassay and HPLC analysis of artesunate (ARTS) and dihydroartemisinin (DHA) in plasma. ARTS and DHA in plasma samples from patients treated with ARTS were quantified by HPLC and expressed as DHA. DHA-equivalents in the same plasma samples were measured using a standardised parasite culture technique. DHA concentrations estimated by both methods were highly correlated (bioassay = 0.96 x HPLC + 11.0; r(2) = 0.92). At high concentrations ( > 12 000 nmol/l) bioassay sometimes overestimated DHA. Bioassay of active drug in plasma correlates well with specific chemical analysis by HPLC. ARTS and DHA appear to account for the total antimalarial activity in plasma after ARTS administration. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene were examined to assess their associations with chloroquine resistance in clinical samples from Armopa (Papua) and Papua New Guinea. In Papua, two of the five pfcrt haplotypes found were new: SVIET from Armopa and CVIKT from an isolate in Timika. There was also a strong association (P < 0.0001) between the pfcrt 76T allele and chloroquine resistance in 50 samples. In Papua New Guinea, mutations in the pfcrt gene were observed in 15 isolates with chloroquine minimum inhibitory concentrations (MICs) of 16-64 pmol, while the remaining six isolates, which had a wild-type pfcrt gene at codon 76, had MICs of 2-8 pmol. These observations confirm that mutations at codon 76 in the pfcrt gene are present in both in vivo and in vitro cases of chloroquine resistance, and that detection of the pfcrt 76T allele could predict potential chloroquine treatment failures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to develop a simple, field-practical, and effective in vitro method for determining the sensitivity of fresh erythrocytic Plasmodium vivax isolates to a range of antimalarials. The method used is a modification of the standard World Health Organization (WHO) microtest for determination of P.falciparum drug sensitivity. The WHO method was modified by removing leukocytes and using a growth medium supplemented with AB(+) serum. We successfully carried out 34 in vitro drug assays on 39 P. vivax isolates collected from the Mae Sod malaria clinic, Tak Province, Thailand. The mean percentage of parasites maturing to schizonts (six or more merozoites) in control wells was 66.5% +/- 5.9% (standard deviation). This level of growth in the control wells enabled rapid microscopic determination (5 min per isolate per drug) of the MICs of chloroquine, dihydroartemisinin, WR238605 (tafenoquine), and sulfadoxine. P. vivax was relatively sensitive to chloroquine (MIC = 160 ng/ml, 50% inhibitory concentration [IC50] = 49.8 ng/ml) and dihydroartemisinin (MIC = 0.5 ng/ml, IC50 = 0.47 ng/ml). The poor response of P. vivax to both tafenoquine (MIC = 14,000 ng/ml, IC50 = 9,739 ng/ml) and sulfadoxine (MIC = 500,000 ng/ml, IC50 = 249,000 ng/ml) was due to the slow action of these drugs and the innate resistance of P. vivax to sulfadoxine. The in vitro assay developed in our study should be useful both for assessing the antimalarial sensitivity of P. vivax populations and for screening new antimalarials in the absence of long-term P. vivax cultures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new United States (U.S.) self-supporting low-profile bednet was designed by Walter Reed Army Institute of Research in collaboration with Breakthrough Technologies. The bednet incorporated permethrin-impregnated screening into a frame that erected automatically when removed from its bag. The new U.S. bednet was compared with the current Australian Defense Force (ADF) mosquito bednet at Buka Island, North Solomons Province, Papua New Guinea, in March 1999. At the time of the test, Anopheles farauti Laveran was the most abundant biting mosquito. Both bednet types provided > 97.8% protection compared with an unprotected collector. The untreated U.S. Army prototype bednet provided better protection than the untreated ADF bednet against mosquitoes entering the bednet during the night.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We measured plasma tafenoquine concentrations in Thai soldiers given a monthly regimen of tafenoquine to determine whether these concentrations adequately suppressed malarial infections on the Thai- Cambodian border. After receiving a treatment course of artesunate and doxycycline, 104 male soldiers were administered a loading dose of tafenoquine ( 400 mg daily for 3 days), followed by tafenoquine monthly ( 400 mg every 4 weeks) for 5 months. Consecutive monthly mean ( +/- standard deviation) trough plasma tafenoquine concentrations were 223 +/- 41, 127 +/- 29, 157 +/- 51. 120 +/- 24, and 88 +/- ng/ mL. Only 1 soldier developed malaria during the study. At the time of malaria diagnosis, his plasma tafenoquine concentration was 40 ng/ mL, which was similar to 3- fold lower than the trough concentrations of the other soldiers. Although low tafenoquine concentrations appear to be uncommon, additional investigations are needed to determine the relationship between plasma tafenoquine concentrations and suppression of malaria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfadoxine is predominantly used in combination with pyrimethamine, commonly known as Fansidar, for the treatment of Plasmodium falciparum. This combination is usually less effective against Plasmodium vivax, probably due to the innate refractoriness of parasites to the sulfadoxine component. To investigate this mechanism of resistance by P. vivax to sulfadoxine, we cloned and sequenced the P. vivax dhps (pvdhps) gene. The protein sequence was determined, and three-dimensional homology models of dihydropteroate synthase (DHPS) from P. vivax as well as P. falciparum were created. The docking of sulfadoxine to the two DHPS models allowed us to compare contact residues in the putative sulfadoxine-binding site in both species. The predicted sulfadoxine-binding sites between the species differ by one residue, V585 in P. vivax, equivalent to A613 in P. falciparum. V585 in P. vivax is predicted by energy minimization to cause a reduction in binding of sulfadoxine to DHPS in P. vivax compared to P. falciparum. Sequencing dhps genes from a limited set of geographically different P. vivax isolates revealed that V585 was present in all of the samples, suggesting that V585 may be responsible for innate resistance of P. vivax to sulfadoxine. Additionally, amino acid mutations were observed in some P. vivax isolates in positions known to cause resistance in P. falciparum, suggesting that, as in P. falciparum, these mutations are responsible for acquired increases in resistance of P. vivax to sulfadoxine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A double-site enzyme-linked lactate dehydrogenase enzyme inummodetection assay was tested against field isolates of Plasmodium falciparum for assessing in vitro drug susceptibilities to a wide range of antimalarial drugs. Its sensitivity allowed the use of parasite densities as low as 200 parasites/mul of blood. Being a nonisotopic, colorimetric assay, it lies within the capabilities of a modest laboratory at the district level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of resistance to sulfadoxine-pyrimethamine by Plasmodium parasites is a major problem for the effective treatment of malaria, especially P. falciparum malaria. Although the molecular basis for parasite resistance is known, the factors promoting the development and transmission of these resistant parasites are less clear. This paper reports the results of a quantitative comparison of factors previously hypothesized as important for the development of drug resistance, drug dosage, time of treatment, and drug elimination half-life, with an in-host dynamics model of P. falciparum malaria in a malaria-naive host. The results indicate that the development of drug resistance can be categorized into three stages. The first is the selection of existing parasites with genetic mutations in the dihydrofolate reductase or dihydropteroate synthetase gene. This selection is driven by the long half-life of the sulfadoxine-pyrimethamine combination. The second stage involves the selection of parasites with allelic types of higher resistance within the host during an infection. The timing of treatment relative to initiation of a specific anti-P. falciparum EMP1 immune response is an important factor during this stage, as is the treatment dosage. During the third stage, clinical treatment failure becomes prevalent as the parasites develop sufficient resistance mutations to survive therapeutic doses of the drug combination. Therefore, the model output reaffirms the importance of correct treatment of confirmed malaria cases in slowing the development of parasite resistance to sulfadoxine-pyrimethamine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunizing pregnant women with a malaria vaccine is one approach to protecting the mother and her offspring from malaria infection. However, specific maternal Abs generated in response to vaccination and transferred to the fetus may interfere with the infant's ability to respond to the same vaccine. Using a murine model of malaria, we examined the effect of maternal 19-kDa C-terminal region of merozoite surface protein-1 (MSP1(19)) and Plasmodium yoelii Abs on the pups' ability to respond to immunization with MSP1(19). Maternal MSPI,g-specific Abs but not A yoelii-specific Abs inhibited Ab production following MSP1(19) immunization in 2-wk-old pups. This inhibition was correlated with the amount of maternal MSP1(19) Ab present in the pup at the time of immunization and was due to fewer specific B cells. Passively acquired Ab most likely inhibited the development of an Ab response by blocking access to critical B cell epitopes. If a neonate's ability to respond to MSP1(19) vaccination depends on the level of maternal Abs present at the time of vaccination, it may be necessary to delay immunization until Abs specific for the vaccinating Ag have decreased.