984 resultados para MAGNETIC MATERIALS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper continues the development of a new approach for the design of shim and gradient coils, used in magnetic resonance imaging (MRI) applications. A cylindrical primary coil of radius a and length 2L is placed inside a co-axial shield cylinder of radius b. An active shielding strategy is used to create a desired target field at an arbitrarily specified (cylindrical) location within the primary coil, and to annul the field at a certain radius outside the shield. The form of the interior target field may be chosen arbitrarily by the designer, although zonal and tesseral harmonics are typically used in MRI applications. The method presented here designs coil windings on both the primary and shielding cylinders, to produce fields that conform to the specified interior target field and the annulled field exterior to the shield. An additional feature of the method presented here is that the target field inside the primary coil is matched at two different radii, to improve overall accuracy. The method is illustrated by designing several shielded shim coils, for creating higher order tesseral fields located asymmetrically within the coil. The simpler case of pure zonal fields is discussed separately and applied to the design of some higher order shielded coils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deterioration of concrete or reinforcing steel through excessive contaminant concentration is often the result of repeated wetting and drying cycles. At each cycle, the absorption of water carries new contaminants into the unsaturated concrete. Nuclear Magnetic Resonance (NMR) is used with large concrete samples to observe the shape of the wetting profile during a simple one-dimensional wetting process. The absorption of water by dry concrete is modelled by a nonlinear diffusion equation with the unsaturated hydraulic diffusivity being a strongly nonlinear function of the moisture content. Exponential and power functions are used for the hydraulic diffusivity and corresponding solutions of the diffusion equation adequately predict the shape of the experimental wetting profile. The shape parameters, describing the wetting profile, vary little between different blends and are relatively insensitive to subsequent re-wetting experiments allowing universal parameters to be suggested for these concretes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equipment used to measure magnetic fields and, electric currents in residences is described. The instrumentation consisted of current transformers, magnetic field probes and locally designed and, built signal conditioning modules. The data acquisition system was capable of unattended recording for extended time periods. The complete system was calibrated to verify its response to known physical inputs. (C) 2003 ISA-The Instrumentation Automation Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different formulations of biodegradable starch-polyester blend nanocomposite materials have been film blown on a pilot scale film blowing tower. The physical properties of different films have been examined by thermal and mechanical analysis and X-ray diffraction. The results show that the addition of an organoclay (from 0 to 5 wt%) significantly improves both the processing and tensile properties over the original starch blends. Wide angle X-ray diffraction (WAXD) results indicate that the best results were obtained for 30wt% starch blends, and the level of delamination depends on the ratio of starch to polyester and amount of organoclay added. The crystallisation temperature of the nanocomposite blends is significantly lower than the base blend. This is probably due to the platelets inhibiting order, and hence crystallisation, of the starch and polyester. The mechanical and thermal properties of the blends are also sensitive to the way the clay particles are dispersed. (C) 2003 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absorption of fluid by unsaturated, rigid porous materials may be characterized by the sorptivity. This is a simple parameter to determine and is increasingly being used as a measure of a material's resistance to exposure to fluids (especially moisture and reactive solutes) in aggressive environments. The complete isothermal absorption process is described by a nonlinear diffusion equation, with the hydraulic diffusivity being a strongly nonlinear function of the degree of saturation of the material. This diffusivity can be estimated from the sorptivity test. In a typical test the cumulative absorption is proportional to the square root of time. However, a number of researchers have observed deviation from this behaviour when the infiltrating fluid is water and there is some potential for chemo-mechanical interaction with the material. In that case the current interpretation of the test and estimation of the hydraulic diffusivity is no longer appropriate. Kuntz and Lavallee (2001) discuss the anomalous behaviour and propose a non-Darcian model as a more appropriate physical description. We present an alternative Darcian explanation and theory that retrieves the earlier advantages of the simple sorptivity test in providing parametric information about the material's hydraulic properties and allowing simple predictive formulae for the wetting profile to be generated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate coherent electron transport through a parallel circuit of two quantum dots (QDs), each of which has a single tunable. energy level. Electrons tunnelling via each dot from the left lead interfere with each other at the right lead. It is shown that due to the quantum interference of tunnelling electrons the double QD device is magnetically polarized by coherent circulation of electrons on the closed path through the dots and the leads. By varying the energy level of each dot one can make the magnetic states of the device be up-, non- or down-polarized. It is shown that for experimentally accessible temperatures and applied biases the magnetic polarization currents Should be sufficiently large to observe with current nanotechnology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three different particular geometrical shapes of parallelepiped, cylinder and sphere were taken from cut green beans (length:diameter = 1:1, 2:1 and 3:1) and potatoes (aspect ratio = 1:1, 2:1 and 3:1) and peas, respectively. Their drying behaviour in a fluidised bed was studied at three different drying temperatures of 30, 40 and 50 degreesC (RH = 15%). Drying curves were constructed using non-dimensional moisture ratio (MR) and time and their behaviour was modelled using exponential (MR = exp(-kt)) and Page (MR = exp(-kt(n))) models. The effective diffusion coefficient of moisture transfer was determined by Fickian method using uni- and three-dimensional moisture movements. The diffusion coefficient was least affected by the size when the moisture movement was considered three-dimensional, whereas the drying temperature had a significative effect on diffusivity as expected. The drying constant and diffusivity coefficients were on the descending order for potato, beans and peas. The Arrhenius activation energy for the peas was also highest, indicating a strong barrier to moisture movement in peas as compared to beans and skinless cut potato pieces. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cristalização e formação de depósitos parafínicos é um problema operacional crítico na indústria do petróleo em todo o mundo e provoca grandes perdas econômicas na recuperação do óleo. São muitos os estudos que têm sido realizados para desenvolver modelos termodinâmicos de predição da precipitação de parafinas, sendo que boa parte deles utilizam a ressonância magnética nuclear (RMN) em alto ou baixo campo magnético juntamente com outras técnicas como calorimetria exploratória diferencial (DSC), análise elementar e cromatografia gasosa para caracterizar a fase sólida formada a partir do petróleo. Este trabalho busca um maior entendimento da cristalização de ceras parafínicas por meio de experimentos de espectroscopia de RMN de 1H e 13C conduzidos em temperaturas variáveis, o que pode auxiliar na previsão e remediação dos problemas causados pela sua deposição nas linhas de escoamento da produção. Para isso, o estudo desse fenômeno foi conduzido inicialmente em amostras de parafina comercial e, posteriormente, em uma amostra de petróleo parafínico com variação de temperatura sem extrair a fase sólida, garantindo a não interferência de solventes que podem influenciar no processo de cristalização. A metodologia desenvolvida demonstrou ser útil para determinar a temperatura inicial de aparecimento de cristais (TIAC), sendo obtida uma boa concordância com os resultados de DSC para a parafina comercial e petróleo. O registro de espectros em diferentes temperaturas permitiu também a identificação das variações de intensidade e largura de linha dos sinais associados aos diferentes grupos químicos presentes nos materiais estudados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroactivematerials can be taken to advantage for the development of sensors and actuators as well as for novel tissue engineering strategies. Composites based on poly(vinylidenefluoride),PVDF,have been evaluated with respect to their biological response. Cell viability and proliferation were performed in vitro both with Mesenchymal Stem Cells differentiated to osteoblasts and Human Fibroblast Foreskin 1. In vivo tests were also performed using 6-week-old C57Bl/6 mice. It was concluded that zeolite and clay composites are biocompatible materials promoting cell response and not showing in vivo pro-inflammatory effects which renders both of them attractive for biological applications and tissue engineering, opening interesting perspectives to development of scaffolds from these composites. Ferrite and silver nanoparticle composites decrease osteoblast cell viability and carbon nanotubes decrease fibroblast viability. Further, carbon nanotube composites result in a significant increase in local vascularization accompanied an increase of inflammatory markers after implantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Storm- and tsunami-deposits are generated by similar depositional mechanisms making their discrimination hard to establish using classic sedimentologic methods. Here we propose an original approach to identify tsunami-induced deposits by combining numerical simulation and rock magnetism. To test our method, we investigate the tsunami deposit of the Boca do Rio estuary generated by the 1755 earthquake in Lisbon which is well described in the literature. We first test the 1755 tsunami scenario using a numerical inundation model to provide physical parameters for the tsunami wave. Then we use concentration (MS. SIRM) and grain size (chi(ARM), ARM, B1/2, ARM/SIRM) sensitive magnetic proxies coupled with SEM microscopy to unravel the magnetic mineralogy of the tsunami-induced deposit and its associated depositional mechanisms. In order to study the connection between the tsunami deposit and the different sedimentologic units present in the estuary, magnetic data were processed by multivariate statistical analyses. Our numerical simulation show a large inundation of the estuary with flow depths varying from 0.5 to 6 m and run up of similar to 7 m. Magnetic data show a dominance of paramagnetic minerals (quartz) mixed with lesser amount of ferromagnetic minerals, namely titanomagnetite and titanohematite both of a detrital origin and reworked from the underlying units. Multivariate statistical analyses indicate a better connection between the tsunami-induced deposit and a mixture of Units C and D. All these results point to a scenario where the energy released by the tsunami wave was strong enough to overtop and erode important amount of sand from the littoral dune and mixed it with reworked materials from underlying layers at least 1 m in depth. The method tested here represents an original and promising tool to identify tsunami-induced deposits in similar embayed beach environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoporous carbon materials were prepared through template method approach using porous clay heterostructures (PCHs) as matrix and furfuryl alcohol as carbon precursor. Three PCHs prepared using amines with 8, 10 and 12 carbon atoms were used. The effect of several impregnation-polymerization cycles of the carbon precursor, the carbonization temperature and the need of a previous surface alumination were evaluated. The presence of two porosity domains was identified in all the carbon materials. These two domains comprise pores resulting from the carbonization of the polymer film formed in the inner structure of the PCH (domain I) and larger pores created by the clay particles aggregation (domain II). The predominance of the porosity associated to domain I or II can be achieved by choosing a specific amine to prepare the PCH matrix. Carbonization at 700 C led to the highest development of pores of domain I. In general, the second impregnation-polymerization cycle of furfuryl alcohol resulted in a small decrease of both types of porosity domains. Furthermore the previous acidification of the surface to create acidic sites proved to be unnecessary. The results showed the potential of PCHs as matrices to tailor the textural properties of carbons prepared by template mediated synthesis.