970 resultados para Méthode de quantification
Resumo:
A methodology to define favorable areas in petroleum and mineral exploration is applied, which consists in weighting the exploratory variables, in order to characterize their importance as exploration guides. The exploration data are spatially integrated in the selected area to establish the association between variables and deposits, and the relationships among distribution, topology, and indicator pattern of all variables. Two methods of statistical analysis were compared. The first one is the Weights of Evidence Modeling, a conditional probability approach (Agterberg, 1989a), and the second one is the Principal Components Analysis (Pan, 1993). In the conditional method, the favorability estimation is based on the probability of deposit and variable joint occurrence, with the weights being defined as natural logarithms of likelihood ratios. In the multivariate analysis, the cells which contain deposits are selected as control cells and the weights are determined by eigendecomposition, being represented by the coefficients of the eigenvector related to the system's largest eigenvalue. The two techniques of weighting and complementary procedures were tested on two case studies: 1. Recôncavo Basin, Northeast Brazil (for Petroleum) and 2. Itaiacoca Formation of Ribeira Belt, Southeast Brazil (for Pb-Zn Mississippi Valley Type deposits). The applied methodology proved to be easy to use and of great assistance to predict the favorability in large areas, particularly in the initial phase of exploration programs. © 1998 International Association for Mathematical Geology.
Resumo:
Two highly sensitive and selective methods based on gas chromatography coupled to mass spectrometry (GC-MS) in the selected ion monitoring (SIM) mode have been developed for the quantification of 2,6-dichlorophenol (2,6-DCP), a sex pheromone of the tick females of Anocentor nitens. Standard addition method and calibration curve techniques using 5-bromine-4-hydroxy-3- methoxybenzaldehyde (5-BrV) as internal standard (IS) afforded detection limit of 0.1ngml-1. The calibration curve was linear over the concentration range from 0.5 to 500ngml-1 for 2,6-DCP. Results show that the concentration range of sex pheromone in the extracts samples was 1.08-10.35ngml-1. The methods developed provided reliable procedures to determine amounts of 2,6-DCP present in ticks. © 2003 Elsevier B.V. All rights reserved.
Resumo:
The Amazonian regions are characterized by large space-time variability in the humidity fields due to the intense convective process in those areas associated with the great humidity potential generated by high temperatures. An experiment denominated RACCI/DRY-TO-WET (RAdiation, Cloud, and Climate Interactions in the Amazonia during the DRY-TO-WET Transition Season) was carried out in the Brazilian Amazonian Region in 2002. The IWV values from GPS and other techniques, such as radiosondes, radiometer and humidity sounding satellites were used in this experiment to supply subsidies to evaluate the aerosols influence in the associated processes modifications to seasonality of atmospheric water vapor. Those regions are one of the most humid of the planet, where IWV (Integrated Water Vapor) average values are in the order of 50 kg/m2. As according the literature the IWV quantification using GPS has not been explored in those circumstances, the objective this paper is to present the preliminary results obtained in the evaluation of the GPS performance in Amazonian Regions when comparing with other techniques. The tendency measurement values indicated that the IWV values from GPS tend to be larger than those from radiosondes and smaller than those from radiometer. On the other hand, IWV values from GPS are very close of the average values supplied by radiosondes and radiometer. Due to the great amount of atmospheric water vapor existent in this region, the results obtained in the experiment in percentile terms are quite better than those found in the literature, which are around of 10%.
Resumo:
The recovery of phenolic compounds of Eugenia pyriformis using different solvents was investigated in this study. The compounds were identified and quantified by reverse-phase high-performance liquid chromatography coupled with ultraviolet-visible diode-array detector (RP-HPLC-DAD/UV-vis). Absolute methanol was the most effective extraction agent of phenolic acids and flavonols (588.31 mg/Kg) from Eugenia pyriformis, although similar results (p ≤ 0.05) were observed using methanol/water (1:1 ratio). Our results clearly showed that higher contents of phenolic compounds were not obtained either with the most or the least polar solvents used. Several phenolic compounds were identified in the samples whereas gallic acid and quercetin were the major compounds recovered. © 2012 Association of Food Scientists & Technologists (India).
Resumo:
Ethanol with added water may be found during the process of assessing its physical and chemical properties. This addition can damage automotive vehicle engines and also may contribute to tax evasion. The present contribution describes a method based on a photothermal transparent transducer to determine the water content in ethanol. A chamber with a window of lithium tantalate coated with a thin layer of indium tin oxide was used, and a 1450-nm laser diode was employed as the excitation source. The results indicated a nearly linear response of the apparatus, as a function of the water content in water/ethanol solutions ranging from 0 to 100 (vol.%). The results for the dependency of the photothermal signal on the laser power and chopping frequency suggested that reliable results can be obtained using laser power and chopping rates above 100 mW and 10 Hz, respectively. The results reported here may be useful in the development of an alternative method that can provide real-time data on the water concentration in ethanol in a rapid, portable and unambiguous way, and that can be easily used in laboratory analyses or in gas stations. © 2013 Elsevier B.V.
Resumo:
The characterization of soil CO2 emissions (FCO2) is important for the study of the global carbon cycle. This phenomenon presents great variability in space and time, a characteristic that makes attempts at modeling and forecasting FCO2 challenging. Although spatial estimates have been performed in several studies, the association of these estimates with the uncertainties inherent in the estimation procedures is not considered. This study aimed to evaluate the local, spatial, local-temporal and spatial-temporal uncertainties of short-term FCO2 after harvest period in a sugar cane area. The FCO2 was featured in a sampling grid of 60m×60m containing 127 points with minimum separation distances from 0.5 to 10m between points. The FCO2 was evaluated 7 times within a total period of 10 days. The variability of FCO2 was described by descriptive statistics and variogram modeling. To calculate the uncertainties, 300 realizations made by sequential Gaussian simulation were considered. Local uncertainties were evaluated using the probability values exceeding certain critical thresholds, while the spatial uncertainties considering the probability of regions with high probability values together exceed the adopted limits. Using the daily uncertainties, the local-spatial and spatial-temporal uncertainty (Ftemp) was obtained. The daily and mean emissions showed a variability structure that was described by spherical and Gaussian models. The differences between the daily maps were related to variations in the magnitude of FCO2, covering mean values ranging from 1.28±0.11μmolm-2s-1 (F197) to 1.82±0.07μmolm-2s-1 (F195). The Ftemp showed low spatial uncertainty coupled with high local uncertainty estimates. The average emission showed great spatial uncertainty of the simulated values. The evaluation of uncertainties associated with the knowledge of temporal and spatial variability is an important tool for understanding many phenomena over time, such as the quantification of greenhouse gases or the identification of areas with high crop productivity. © 2013 Elsevier B.V.
Resumo:
Hebanthe eriantha (Poir.) Pedersen (Amaranthaceae), which is known as Brazilian ginseng is widely used in folk medicine as an aphrodisiac and antidiabetic tonic. The anti-tumor activity, attributed to the pfaffic acid present in roots of H. eriantha, is responsible for the great interest in the commercialization of this species. In Brazil, the species H. eriantha is mainly used in commercial preparations, although other plants of the genus Pfaffia and Hebanthe have been marketed as Pfaffia paniculata or Brazilian ginseng. The pfaffic acid present in the roots is mainly conjugated with sugars (pfaffosides) and can be used as an active marker of H. eriantha, which helps to differentiate this species from others marketed as Brazilian ginseng. The main objective of this study was to develop and validate a liquid chromatographic method to quantify pfaffic acid in the roots of H. eriantha. The extraction and hydrolysis conditions were optimized using an univariate and experimental design, respectively, and the quantification of pfaffic acid by high performance liquid chromatography with diode-array detection (HPLC-DAD) was validated. This method was used to evaluate the pfaffic acid content in 30 different genotypes of the species from a germplasm collection. The content of pfaffic acid ranged from 0.97 to 4.29% (w/w) on a dry weight basis. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Obtaining a semi-automatic quantification of pathologies found in the lung, through images of high resolution computed tomography (HRCT), is of great importance to aid in medical diagnosis. Paraccocidioidomycosis (PCM) is a systemic disease that affects the lung and even after effective treatment leaves sequels such as pulmonary fibrosis and emphysema. It is very important to the area of tropical diseases that the lung injury be quantified more accurately. In this stud, we propose the development of algorithms in computational environment Matlab® able to objectively quantify lung diseases such as fibrosis and emphysema. The program consists in selecting the region of interest (ROI), and through the use of density masks and filters, obtaining the lesion area quantification in relation to the healthy area of the lung. The proposed method was tested on 15 exams of HRCT of patients with confirmed PCM. To prove the validity and effectiveness of the method, we used a virtual phantom, also developed in this research. © 2013 Springer-Verlag.
Resumo:
The purpose of this work was to determine the levels of protein and the amino acid distribution in the cell mass of yeast strains (Saccharomyces sensu stricto) originated from Brazilian bioethanol industries. The protein was analyzed with the Kjeldahl method and the amino acids, by using high-performance liquid chromatography (HPLC). The percentages of the protein found ranged from 39 to 49%. The results show that in spite of some variation in numbers between the different yeast strains, all of them presented an amino acid profile similar to the one in the literature for S. cerevisae. The amino acids that have occurred in the largest amounts were: aspartic, glutamic acids and lysine, and those in the lowest amounts were: cysteine and methionine. Although the characteristics of the feedstock used and the process conditions are determinant of the protein values obtained in dry mass, this work elucidates that the intrinsic properties of the yeast strain influence these values.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A study was made of the composition of wastes collected from the pipes of the stormwater drainage system of Sorocaba, SP, Brazil (600 thousand inhabitants). A total of 10 samples weighing at least 100 kg each were sorted into 19 items to determine the fraction that can be considered natural (earth/sand, stones, organic matter, and water, the latter determined after oven-drying the samples) and the anthropogenic fraction (the remaining 15 items, especially construction and demolition wastes and packaging). Soil/sand was found to be the main item collected (52.5 % dry weight), followed by the water soaked into the waste (24.3 %), which meant that all the other wastes were saturated in mud, whose contents varied from 6.4 % (glass) to 87.2 % (metalized plastics packaging). In general, 83 % of the collected wastes can be classified as natural, but the remaining 17 % represent 2,000 kg of the most varied types of wastes discarded improperly every day on the streets of the city. This is an alarming amount of wastes that may clog parts of the drainage systems, causing troubles for all the population (like flooding) and must be strongly considered in municipal solid wastes management and in environmental education programs. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)