881 resultados para Lungs.
Resumo:
Although the attenuated Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccine has been used since 1921, tuberculosis (TB) control still proceeds at a slow pace. The main reason is the variable efficacy of BCG protection against TB among adults, which ranges from 0-80%. Subsequently, the mc2-CMX vaccine was developed with promising results. Nonetheless, this recombinant vaccine needs to be compared to the standard BCG vaccine. The objective of this study was to evaluate the immune response induced by mc2-CMX and compare it to the response generated by BCG. BALB/c mice were immunised with both vaccines and challenged with Mycobacterium tuberculosis (Mtb). The immune and inflammatory responses were evaluated by ELISA, flow cytometry, and histopathology. Mice vaccinated with mc2-CMX and challenged with Mtb induced an increase in the IgG1 and IgG2 levels against CMX as well as recalled specific CD4+ T-cells that produced T-helper 1 cytokines in the lungs and spleen compared with BCG vaccinated and challenged mice. Both vaccines reduced the lung inflammatory pathology induced by the Mtb infection. The mc2-CMX vaccine induces a humoral and cellular response that is superior to BCG and is efficiently recalled after challenge with Mtb, although both vaccines induced similar inflammatory reductions.
Resumo:
Seeking the identification of Angiostrongylus cantonensis as a potential etiological agent of three clinical cases of eosinophilic meningitis, mollusc specimens were collected in the state of Espírito Santo, Brazil. The snails were identified as Sarasinula marginata (45 specimens), Subulina octona (157), Achatina fulica (45) and Bradybaena similaris (23). Larvae obtained were submitted to polymerase chain reaction and restriction fragment length polymorphism diagnosis. Their genetic profile were corresponded to A. cantonensis. Rattus norvegicus experimentally infected with third-stage larvae, developed menigoencephalitis, and parasites became sexually mature in the lungs. Additionally, larvae obtained from A. fulica snails, from São Vicente, state of São Paulo, also showed genetic profiles of this nematode. This is the first record of Brazilian molluscs infected with this nematode species.
Resumo:
Tese de dout. em Biologia, especialidade de Biologia Molecular, Unidade de Ciências e Tecnologias dos Recursos Aquáticos, Univ. do Algarve
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Animal, 2016.
Resumo:
Siloxanes are widely used in personal care and industrial products due to their low surface tension, thermal stability, antimicrobial and hydrophobic properties, among other characteristics. Volatile methyl siloxanes (VMS) have been detected both in landfill gas and biogas from anaerobic digesters at wastewater treatment plants. As a result, they are released to gas phase during waste decomposition and wastewater treatment. During transformation processes of digester or landfill gas to energy, siloxanes are converted to silicon oxides, leaving abrasive deposits on engine components. These deposits cause increased maintenance costs and in some cases complete engine overhauls become necessary. ^ The objectives of this study were to compare the VMS types and levels present in biogas generated in the anaerobic digesters and landfills and evaluate the energetics of siloxane transformations under anaerobic conditions. Siloxane emissions, resulting from disposal of silicone-based materials, are expected to increase by 29% within the next 10 years. Estimated concentrations and the risk factors of exposure to siloxanes were evaluated based on the initial concentrations, partitioning characteristics and persistence. It was determined that D4 has the highest risk factor associated to bioaccumulation in liquid and solid phase, whereas D5 was highest in gas phase. Additionally, as siloxanes are combusted, the particle size range causes them to be potentially hazardous to human health. When inhaled, they may affix onto the alveoli of the lungs and may lead to development of silicosis. Siloxane-based COD-loading was evaluated and determined to be an insignificant factor concerning COD limits in wastewater. ^ Removal of siloxane compounds is recommended prior to land application of biosolids or combustion of biogas. A comparison of estimated costs was made between maintenance practices for removal of siloxane deposits and installation/operation of fixed-bed carbon absorption systems. In the majority of cases, the installation of fixed-bed adsorption systems would not be a feasible option for the sole purpose of siloxane removal. However they may be utilized to remove additional compounds simultaneously.^
Resumo:
Liver cancer accounts for nearly 10% of all cancers in the US. Intrahepatic Arterial Radiomicrosphere Therapy (RMT), also known as Selective Internal Radiation Treatment (SIRT), is one of the evolving treatment modalities. Successful patient clinical outcomes require suitable treatment planning followed by delivery of the microspheres for therapy. The production and in vitro evaluation of various polymers (PGCD, CHS and CHSg) microspheres for a RMT and RMT planning are described. Microparticles with a 30±10 µm size distribution were prepared by emulsion method. The in vitro half-life of the particles was determined in PBS buffer and porcine plasma and their potential application (treatment or treatment planning) established. Further, the fast degrading microspheres (≤ 48 hours in vitro half-life) were labeled with 68Ga and/or 99mTc as they are suitable for the imaging component of treatment planning, which is the primary emphasis of this dissertation. Labeling kinetics demonstrated that 68Ga-PGCD, 68Ga-CHSg and 68Ga-NOTA-CHSg can be labeled with more than 95% yield in 15 minutes; 99mTc-PGCD and 99mTc-CHSg can also be labeled with high yield within 15-30 minutes. In vitro stability after four hours was more than 90% in saline and PBS buffer for all of them. Experiments in reconstituted hemoglobin lysate were also performed. Two successful imaging (RMT planning) agents were found: 99mTc-CHSg and 68Ga-NOTA-CHSg. For the 99mTc-PGCD a successful perfusion image was obtained after 10 minutes, however the in vivo degradation was very fast (half-life), releasing the 99mTc from the lungs. Slow degrading CHS microparticles (> 21 days half-life) were modified with p-SCN-b-DOTA and labeled with 90Y for production of 90Y-DOTA-CHS. Radiochemical purity was evaluated in vitro and in vivo showing more than 90% stability after 72 and 24 hours respectively. All agents were compared to their respective gold standards (99mTc-MAA for 68Ga-NOTA-CHSg and 99mTc-CHSg; 90Y-SirTEX for 90Y-DOTA-CHS) showing superior in vivo stability. RMT and RMT planning agents (Therapy, PET and SPECT imaging) were designed and successfully evaluated in vitro and in vivo.
Resumo:
The airways of most people with cystic fibrosis are colonized with biofilms of the Gram-negative, opportunistic pathogen Pseudomonas aeruginosa. Delivery of antibiotics directly to the lung in the form of dry powder aerosols offers the potential to achieve high local concentrations directly to the biofilms. Unfortunately, current aerosolised antibiotic regimes are unable to efficiently eradicate these biofilms from the airways. We investigated the ability of the innate antimicrobial, lactoferrin, to enhance the activity of two aminoglycoside antibiotics (tobramycin and gentamicin) against biofilms of P. aeruginosa strain PAO1. Biofilms were prepared in 96 well polystyrene plates. Combinations of the antibiotics and various lactoferrin preparations were spray dried. The bacterial cell viability of the various spray dried combinations was determined. Iron-free lactoferrin (apo lactoferrin) induced a 3-log reduction in the killing of planktonic cell by the aminoglycoside antibiotics (p < 0.01) and also reduced both the formation and persistence of P. aeruginosa biofilms (p < 0.01). Combinations of lactoferrin and an aminoglycoside displays potential as an effective new therapeutic strategy in the treatment of P. aeruginosa biofilms infections such as those typical of the CF lungs.
Resumo:
Tuberculosis-like lesions (TBL) in pigs have been associated with microorganisms other than mycobacteria. In this work a histopathological and microbiological evaluation of TBL in pigs is shown. A total of 352 samples belonging to 171 pigs totally condemned at slaughterhouse due to generalized TBL were sampled and selected for analysis. Pyogranulomatous (56.2%) and granulomatous lesions (20.2%) were observed in all analysed organs. Most of the granulomas observed in both lymph nodes and lungs belonged to more advanced stages of development (stages III and IV) whereas in the liver and the spleen most of lesions belonged to intermediate stages (stages II and III). Different microorganisms were simultaneously detected from TBL in the 42.7% of the animals. Mycobacterium tuberculosis complex (MTC) (38%), coryneform bacteria (40.3%) and streptococci (28.1%) were the main groups of microorganisms detected after bacteriological analysis, with Trueperella pyogenes and Streptococcus suis as the most frequently isolated species. Mycobacteria belonging to MTC were the most frequently detected pathogens in granulomatous and pyogranulomatous lesions in submandibular lymph nodes (32.7%) and coryneform bacteria were the microorganisms more frequently isolated from lungs (25.9%) and spleen samples (37.2%). These results may provide new insights into the pathogenesis and diagnosis of this pathology. The importance of coryneform bacteria and streptococci in such processes must be evaluated in future studies.
Resumo:
Asthma is a chronic respiratory disease whose prevalence is increasing in the western world. Recently research has begun to focus on the role the microbiome plays in asthma pathogenesis in the hope of further understanding this respiratory disorder. Considered sterile until recently, the lungs have revealed themselves to contain a unique microbiota. A shift towards molecular methods for the quantification and sequencing of microbial DNA has revealed that the airways harbour a unique microbiota with apparent, reproducible differences present between healthy and diseased lungs. There is a hope that in classifying the microbial load of the asthmatic airway an insight may be afforded as to the possible role pulmonary microbes may have in propagating an asthmatic airway response. This could potentially pave the way for new therapeutic strategies for the treatment of chronic lung conditions such as asthma.
Resumo:
Pulmonary arterial hypertension (PAH) is a progressive disease of the small pulmonary arteries, characterised by pulmonary vascular remodelling due to excessive proliferation and resistance to apoptosis of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs). The increased pulmonary vascular resistance and elevated pulmonary artery pressures result in right heart failure and premature death. Germline mutations of the bone morphogenetic protein receptor-2 (bmpr2) gene, a receptor of the transforming growth factor beta (TGF-β) superfamily, account for approximately 75%-80% of the cases of heritable form of PAH (HPAH) and 20% of sporadic cases or idiopathic PAH (IPAH). IPAH patients without known bmpr2 mutations show reduced expression of BMPR2. However only ~ 20% of bmpr2-mutation carriers will develop the disease, due to an incomplete penetrance, thus the need for a ‘second hit’ including other genetic and/or environmental factors is accepted. Diagnosis of PAH occurs most frequently when patients have reached an advanced stage of disease. Although modern PAH therapies can markedly improve a patient’s symptoms and slow the rate of clinical deterioration, the mortality rate from PAH remains unacceptably high. Therefore, the development of novel therapeutic approaches is required for the treatment of this multifaceted disease. Noncoding RNAs (ncRNAs) include microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). MiRNAs are ~ 22 nucleotide long and act as negative regulators of gene ex-pression via degradation or translational inhibition of their target mRNAs. Previous studies showed extensive evidence for the role of miRNAs in the development of PAH. LncRNAs are transcribed RNA molecules greater than 200 nucleotides in length. Similar to classical mRNA, lncRNAs are translated by RNA polymerase II and are generally alternatively spliced and polyadenylated. LncRNAs are highly versatile and function to regulate gene expression by diverse mechanisms. Unlike miRNAs, which exhibit well-defined actions in negatively regulating gene expression via the 3’-UTR of mRNAs, lncRNAs play more diverse and unpredictable regulatory roles. Although a number of lncRNAs have been intensively investigated in the cancer field, studies of the role of lncRNAs in vascular diseases such as PAH are still at a very early stage. The aim of this study was to investigate the involvement of specific ncRNAs in the development of PAH using experimental animal models and cell culture. The first ncRNA we focused on was miR-143, which is up-regulated in the lung and right ventricle tissues of various animal models of PH, as well as in the lungs and PASMCs of PAH patients. We show that genetic ablation of miR-143 is protective against the development of chronic hypoxia induced PH in mice, assessed via measurement of right ventricular systolic pressure (RVSP), right ventricular hypertrophy (RVH) and pulmonary vascular remodelling. We further report that knockdown of miR-143-3p in WT mice via anti-miR-143-3p administration prior to exposure of mice to chronic hypoxia significantly decreases certain indices of PH (RVSP) although no significant changes in RVH and pulmo-nary vascular remodelling were observed. However, a reversal study using antimiR-143-3p treatment to modulate miR-143-3p demonstrated a protective effect on RVSP, RVH, and muscularisation of pulmonary arteries in the mouse chronic hypoxia induced PH model. In vitro experiments showed that miR-143-3p overexpression promotes PASMC migration and inhibits PASMC apoptosis, while knockdown miR-143-3p elicits the opposite effect, with no effects observed on cellular proliferation. Interestingly, miR-143-3p-enriched exosomes derived from PASMCs mediated cell-to-cell communication between PASMCs and PAECs, contributing to the pro-migratory and pro-angiogenic phenotype of PAECs that underlies the pathogenesis of PAH. Previous work has shown that miR-145-5p expression is upregulated in the chronic hypoxia induced mouse model of PH, as well as in PAH patients. Genetic ablation and pharmacological inhibition (subcutaneous injection) of miR-145-5p exert a protective against the de-velopment of PAH. In order to explore the potential for alternative, more lung targeted delivery strategies, miR-145-5p expression was inhibited in WT mice using intranasal-delivered antimiR-145-5p both prior to and post exposure to chronic hypoxia. The decreased expression of miR-145-5p in lung showed no beneficial effect on the development of PH compared with control antimiRNA treated mice exposed to chronic hypoxia. Thus, miR-143-3p modulated both cellular and exosome-mediated responses in pulmonary vascular cells, while the inhibition of miR-143-3p prevented the development of experimental pulmonary hypertension. We focused on two lncRNAs in this project: Myocardin-induced Smooth Muscle Long noncoding RNA, Inducer of Differentiation (MYOSLID) and non-annotated Myolnc16, which were identified from RNA sequencing studies in human coronary artery smooth muscle cells (HCASMCs) that overexpress myocardin. MYOSLID was significantly in-creased in PASMCs from patients with IPAH compared to healthy controls and increased in circulating endothelial progenitor cells (EPCs) from bmpr2 mutant PAH patients. Exposure of PASMCs to hypoxia in vitro led to a significant upregulation in MYOSLID expres-sion. MYOSLID expression was also induced by treatment of PASMC with BMP4, TGF-β and PDGF, which are known to be triggers of PAH in vitro. Small interfering RNA (siR-NA)-mediated knockdown MYOSLID inhibited migration and induced cell apoptosis without affecting cell proliferation and upregulated several genes in the BMP pathway in-cluding bmpr1α, bmpr2, id1, and id3. Modulation of MYOSLID also affected expression of BMPR2 at the protein level. In addition, MYOSLID knockdown affected the BMP-Smad and BMP-non-Smad signalling pathways in PASMCs assessed by phosphorylation of Smad1/5/9 and ERK1/2, respectively. In PAECs, MYOSLID expression was also induced by hypoxia exposure, VEGF and FGF2 treatment. In addition, MYOSLID knockdown sig-nificantly decreased the proliferation of PAECs. Thus, MYOSLID may be a novel modulator in pulmonary vascular cell functions, likely through the BMP-Smad and –non-Smad pathways. Treatment of PASMCs with inflammatory cytokines (IL-1 and TNF-α) significantly in-duced the expression of Myolnc16 at a very early time point. Knockdown of Myolnc16 in vitro decreased the expression of il-6, and upregulated the expression of il-1 and il-8 in PASMCs. Moreover, the expression levels of chemokines (cxcl1, cxcl6 and cxcl8) were sig-nificantly decreased with Myolnc16 knockdown. In addition, Myolnc16 knockdown decreased the MAP kinase signalling pathway assessed by phosphorylation of ERK1/2 and p38 MAPK and inhibited cell migration and proliferation in PASMCs. Thus, Myolnc16 may a novel modulator of PASMCs functions through anti-inflammatory signalling pathways. In summary, in this thesis we have demonstrated how miR-143-3p plays a protective role in the development of PH both in vivo animal models and patients, as well as in vitro cell cul-ture. Moreover, we have showed the role of two novel lncRNAs in pulmonary vascular cells. These ncRNAs represent potential novel therapeutic targets for the treatment of PAH with further work addressing to investigate the target genes, and the pathways modulated by these ncRNAs during the development of PAH.
Resumo:
Antecedente: La infección por el virus sincitial respiratorio (VSR) representa una elevada morbimortalidad, y en algunos casos necesidad de manejo en unidades de cuidado intensivo pediátrico (UCIP). La respuesta inmunológica influye de manera directa en la expresión de la severidad y pronóstico de los pacientes con infección respiratoria. Metodología: Estudio de una cohorte retrospectiva de pacientes con infección respiratoria grave secundaria a VSR, sin historia de inmunodeficiencia, atendidos en la UCIP del Hospital Universitario Clínica San Rafael. Se realizó análisis descriptivoglobaly de acuerdo a la categorización de las prueba de IgG. Resultados: De 188 pacientes que ingresaron a la UCIP, 13% presentaron infección por VSR (24), con una edad promedio de 7,3 (DE=3,6) meses. Pertenecían al sexo masculino79,83%. Se encontró que 12,5% tenían un valor de IgGbajo para su edad, 58,33% tenían valores en límite inferior y el 29,17% dentro de rangos normales para su edad. En los pacientes con IgG baja, fue mayor la presentación de choque séptico que no responde a líquidos (100 vs 92 vs 86%), la mediana de días de ventilación mecánica fue mayor (8 vs 6 vs 5 respectivamente), así como la mortalidad (67 vs 7,1 vs 0%). Conclusión: Nuestra serie encontró que aquellos pacientes con niveles bajos o valores en el límite inferior de IgG sérica tuvieron mayor compromiso sistémico, mayor duración de ventilación mecánica y mayor mortalidad. Se necesitan estudios prospectivos que relaciones niveles bajos de IgG con severidad y pronostico en estos pacientes con infección grave por VSR.