980 resultados para Low temperature research


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fe films with the different thicknesses were grown on c(4x4) reconstructed GaAs (001) surfaces at low temperature by molecular-beam epitaxy. Well-ordered bcc structural Fe epitaxial films are confirmed by x-ray diffraction patterns and high-resolution cross-sectional transmission electron microscopy images. A large lattice expansion perpendicular to the surface in Fe film is observed. In-plane uniaxial magnetic anisotropy is determined by the difference between magnetizing energy along [110] and [110] directions, and the constant of interfacial uniaxial magnetic anisotropy is calculated to be 1.02x10(-4) J m(-2). We also find that magnetic anisotropy is not obviously influenced after in situ annealing, but in-plane strain is completely changed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The characteristics of equilateral-triangle resonator (ETR) and square resonator microlasers are reported, which are potential light sources in the photonic integrations. Based on the numerical simulations, we find that high-efficiency directional emission can be achieved for the triangle and square microlasers by directly connecting an output waveguide to the resonators. The electrically injected InP/InGaAsP ETR and square resonator microlasers with a 2-mu m-wide output waveguide were fabricated by standard photolithography and inductively coupled plasma etching techniques. Room-temperature continuous-wave (CW) operations were achieved for the ETR microlasers with the side length from 10 to 30 mu m and the square resonator microlasers with the side length of 20 mu m. The output power versus CW injection current and the laser spectra are presented for an ETR microlaser up to 310 K and a square resonator microlaser to 305 K. The lasing spectra with mode wavelength intervals as that of whispering-gallery-type modes and Fabry-Perot modes are observed for two square lasers, which can lase at low temperature and room temperature, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spin dynamics in (Ga,Mn)As films grown on GaAs(001) was investigated by Time-resolved magneto-optical Kerr effect. The Kerr signal decay time of (Ga,Mn)As without external magnetic field applied was found to be several hundreds picoseconds, which suggested that photogenerated polarized holes and magnetic ions are coupled as a ferromagnetic system. Nonmonotonic temperature dependence of relaxation and dephasing (R&D) time and Larmor frequency manifests that Bir-Aronov-Pikus mechanism dominates the spin R&D time at low temperature, while D'yakonov-Perel mechanism dominates the spin R&D time at high temperature, and the crossover between the two regimes is Curie temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A fiber Bragg grating (FBG) pressure sensing scheme based on a flat diaphragm and an L-shaped lever is presented. An L-shaped lever transfers the pressure-induced defection of the flat diaphragm to the axial elongation of the FBG. The curve where the L-shaped lever contacts the diaphragm is a segment of an Archimedes spiral, which is used to enhance the responsivity. Because the thermal expansion coefficient of the quartz-glass L-shaped lever and the steel sensor shell is different, the temperature effect is compensated for by optimizing the dimension parameters. Theoretical analysis is presented, and the experimental results show that an ultrahigh pressure responsivity of 244 pm/kPa and a low temperature responsivity of 2.8 pm/degrees C are achieved. (c) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI 10.1117/1.3081058]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of thickness of the high-temperature (HT) AlN buffer layer on the properties of GaN grown on Si(111) has been investigated. Optical microscopy (OM), atomic force microscopy (AFM) and X-ray diffraction (XRD) are employed to characterize these samples grown by metal-organic chemical vapor deposition (MOCVD). The results demonstrate that the morphology and crystalline properties of the GaN epilayer strongly depend on the thickness of HT AlN buffer layer, and the optimized thickness of the HT AlN buffer layer is about 110 nm. Together with the low-temperature (LT) AlN interlayer, high-quality GaN epilayer with low crack density can be obtained. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two emission peaks were observed in the low temperature photoluminescence (LTPL) spectra of an InGaN/GaN multiple quantum well (MQW) structure before and after nanopillar fabrication. After nanopillar fabrication it is found that among the two peaks the longer wavelength peak exhibits a clear blue shift and has a much stronger enhancement in LTPL intensity than the shorter one. Combined with x-ray diffraction and spatially resolved cathodoluminescence analyses, the difference induced by nanopillar fabrication is ascribed to different strain relaxation states in the lower and upper quantum well layers. It is found that the lower QW layers of the as-grown MQW which causes the longer wavelength PL peak are more strained, while the upper ones are almost fully strain-relaxed. Therefore, the nanopillar fabrication induces much less strain relaxation in the upper part of the MQW than in the lower one.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

InAs quantum wires (QWRs) have been fabricated on the InP(001), which has been evidenced by TEM and polarized photoluminescence measurements (PPL). The monlayer-splitting peaks (MSPs) in the PL spectrum of InAs QWRs can be clearly observed at low temperature measurements. Supposing a peak-shift of MSP identical to that of bulk material, we obtain the thermal activation energies of up to 5 MSPs. The smaller thermal activation energies for the MSPs of higher energy lead to the fast red-shift of PL peak as a whole.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have studied magnetic and transport properties of insulating and metallic (Ga,Mn)As layers before and after annealing. A dramatic increase of the ferromagnetic transition temperature T-C by postgrowth annealing has been realized in both insulating and metallic (Ga,Mn)As. The as-grown insulating (Ga,Mn)As can be turned into metallic by the low-temperature annealing. For all the metallic (Ga,Mn)As, a characteristic feature in the temperature dependence of sheet resistance appears around T-C. This phenomenon may provide a simple and more convenient method to determine the T-C of metallic (Ga,Mn)As compared with superconducting quantum interference device (SQUID) measurement. Moreover, the T-C of the metallic (Ga,Mn)As obtained by this way is in good agreement with that measured by a SQUID magnetometer. (C) 2005 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A simple process for fabricating low-cost Si-based continuously tunable long-wavelength resonant-cavity-enhanced (RCE) photodetectors has been investigated. High-contrast SiO2/Si(Deltan similar to2) was employed as mirrors to eliminate the need to grow thick epitaxial distributed Bragg reflectors. Such high-reflectivity SiO2/Si mirrors were deposited on the as-grown InGaAs epitaxy layers, and then were bonded to silicon substrates at a low temperature of 350 C without any special treatment on bonding surfaces, employing silicate gel as the bonding medium. The cost is thus decreased. A thermally tunable Si-based InGaAs RCE photodetector operating at 1.3-1.6 mum was obtained, with a quantum efficiency of about 44% at the resonant wavelength of 1476 nm and a tuning range of 14.5 nm. It demonstrates a great potential for industry processes. (C) 2005 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cr-doped InAs self-organized diluted magnetic quantum dots (QDs) are grown by low-temperature molecular-beam epitaxy, Magnetic measurements reveal that the Curie temperature of all the InAs:Cr QDs layers with Cr/In flux ratio changing from 0.026 to 0.18 is beyond 400 K. High-resolution cross sectional transmission electron microscopy images indicate that InAs:Cr QDs are of the zincblende structure. Possible origins responsible for the high Curie temperature are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have investigated the temperature and pressure dependences of the copper-related green emission, which show fine structure at low temperature, from tetrapodlike ZnO microrods. The temperature dependence of the green emission energy follows the changes in the band gap from 10-200 K, but deviates from this behavior above 200 K. The pressure dependence of the copper-related green band (25 +/- 5 meV/GPa) is similar to that of the band gap of ZnO, and is larger than that reported previously for defect-related green emission in ZnO. (c) 2006 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The temperature dependence of the formation of nano-scale indium clusters in InAlGaN quaternary alloys, which are grown by metalorganic chemical vapour deposition on GaN/Si(111) epilayers, is investigated. Firm evidence is provided to support the existence of phase separation, or nano-scale In-rich clusters, by the combined results of high-resolution transmission electron microscopy (HRTEM), high-resolution x-ray diffraction (HRXRD) and micro-Raman spectra. The results of HRXRD and Raman spectra indicate that the degree of phase separation is strong and the number of In clusters in the InAlGaN layers on silicon substrate is higher at lower growth temperatures than that at higher growth temperatures, which limits the In and Al incorporated into the InAlGaN quaternary alloys. The detailed mechanism of luminescence in this system is studied by low temperature photoluminescence (LT-PL). We conclude that the ultraviolet (UV) emission observed in the quaternary InAlGaN alloys arises from the matrix of a random alloy, and the second emission peak in the blue-green region results from the nano-scale indium clusters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gallium nitride (GaN)-based Schottky junctions were fabricated by RF-plasma-assisted molecular beam epitaxy (MBE). The GaN epitaxial layers were deposited on novel double buffer layers that consist of a conventional low-temperature buffer layer (LTBL) grown at 500 degreesC and an intermediate-temperature buffer layer (ITBL) deposited at 690 degreesC. Low-frequency excess noise and deep level transient Fourier spectroscopy (DLTFS) were measured from the devices. The results demonstrate a significant reduction in the density of deep levels in the devices fabricated with the GaN films grown with an ITBL. Compared to the control sample, which was grown with just a conventional LTBL, a three-order-of-magnitude reduction in the deep levels 0.4 eV below the conduction band minimum (Ec) is observed in the bulk of the thin films using DLTFS measurements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To heteroepitaxally grow the crystalline cubic-GaN (c-GaN) film on the substrates with large lattice mismatch is basically important for fabricating the blue or ultraviolet laser diodes based on cubic group III nitride materials. We have obtained the crystalline c-GaN film and the heteroepitaxial interface between c-Gan and GaAs (001) substrate by the ECR Plasma-Assisted Metal Organic Chemical Vapor Deposition (PA-MOCVD) under low-pressure and low-temperature (similar to600degreesC) on a homemade ECR-plasma Semiconductor Processing Device (ESPD). In order to decrease the growth temperature, the ECR plasma source was adopted as the activated nitrogen source, therefore the working pressure of MOCVD was decreased down to the region less than 1 Pa. To eliminate the damages from energetic ions of current plasma source, a Multi-cusp cavity,coupling ECR Plasma source (MEP) was selected to use in our experiment. To decrease the strain and dislocations induced from the large lattice mismatch between c-GaN and GaAs substrate, the plasma pretreatment procedure i.e., the initial growth technique was investigated The experiment arrangements, the characteristics of plasma and the growth procedure, the characteristics on-GaN film and interface between c-GaN and GaAs(001), and the roles of ECR plasma are described in this contribution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A detailed characterisation study of GaN thin films grown by rf-plasma molecular beam epitaxy on intermediate-temperature buffer layers (ITBL) was carried out with Hall, photoluminescence (PL) and deep-level transient Fourier spectroscopy (DLTFS) techniques. The unique feature of our GaN thin films is that the GaN epitaxial layers are grown on top of a double layer that consists of an ITBL, which is grown at 690 degreesC, and a conventional low-temperature buffer layer deposited at 500 degreesC. It is observed that the electron mobility increases steadily with the thickness of the ITBL, which peaks at 377 cm(2)V(-1)S(-1) for an ITBL thickness of 800 nm. The PL also demonstrated systematic improvements with the thickness of the ITBL. The DLTFS results suggest a three-order-of-magnitude reduction in the deep level at E-c-0.40 eV in the device fabricated with the GaN films grown on an ITBL thickness of 1.25 mum in comparison with the control device without an ITBL. Our analyses indicate that the utilization of an ITBL in addition to the conventional low-temperature buffer layer leads to the relaxation of residual strain within the material, resulting in an improvement in the optoelectronic properties of the films. (C) 2002 Elsevier Science BN. All rights reserved.