879 resultados para Loading constraints
Resumo:
Knowing the extent of the West Antarctic Ice Sheet (WAIS) at the Last Glacial Maximum (LGM) is crucial for initiating and calibrating numerical ice sheet models that can predict future ice-sheet change and contributions to sea level. However, empirical data are lacking for key areas of outer continental shelves, where the LGM-WAIS must have terminated. We present detailed marine geophysical and geological data documenting an up to ~12 m-thick sequence of glaciomarine sediments within a relict glacial trough in the outer parts of the Amundsen Sea Embayment. Continuous deposition must have persisted here since at least >40 ka BP, pre-dating the established LGM by >13,000 years. Observations constrain the LGM grounding line to a distinct grounding-zone wedge ~100 km inland from the continental shelf edge. Thus, a substantial shelf area (~6000 km**2) remained ice free through the last glacial cycle.
Resumo:
The effect of decreasing aragonite saturation state (Omega Arag) of seawater (elevated pCO2) on calcification rates of Acropora muricata was studied using nubbins prepared from parent colonies located at two sites of La Saline reef (La Réunion Island, western Indian Ocean): a back-reef site (BR) affected by nutrient-enriched groundwater discharge (mainly nitrate), and a reef flat site (RF) with low terrigenous inputs. Protein and chlorophyll a content of the nubbins, as well as zooxanthellae abundance, were lower at RF than BR. Nubbins were incubated at ~27°C over 2 h under sunlight, in filtered seawater manipulated to get differing initial pCO2 (1,440-340 µatm), Omega Arag (1.4-4.0), and dissolved inorganic carbon (DIC) concentrations (2,100-1,850 µmol/kg). Increasing DIC concentrations at constant total alkalinity (AT) resulted in a decrease in Omega Arag and an increase in pCO2. AT at the beginning of the incubations was kept at a natural level of 2,193 ± 6 µmol/kg (mean ± SD). Net photosynthesis (NP) and calcification were calculated from changes in pH and AT during the incubations. Calcification decrease in response to doubling pCO2 relative to preindustrial level was 22% for RF nubbins. When normalized to surface area of the nubbins, (1) NP and calcification were higher at BR than RF, (2) NP increased in high pCO2 treatments at BR compared to low pCO2 treatments, and (3) calcification was not related to Omega Arag at BR. When normalized to NP, calcification was linearly related to Omega Arag at both sites, and the slopes of the relationships were not significantly different. The increase in NP at BR in the high pCO2 treatments may have increased calcification and thus masked the negative effect of low Omega Arag on calcification. Removing the effect of NP variations at BR showed that calcification declined in a similar manner with decreased Omega Arag (increased pCO2) whatever the nutrient loading.
Resumo:
The microstructures, mineralogy and chemistry of four representative samples collected from cores extracted from the Japan Trench during Integrated Ocean Drilling Project Expedition 343, the Japan Trench Fast Drilling Project (JFAST) have been studied using optical microscopy, TEM, SEM, XRF, XRD and microprobe analyses. The samples provide a transect from relatively undeformed marine sediments in the hanging wall, to the undeformed footwall material, crossing the thrust interface between the Pacific and North American plate, where the fault slipped during the March 2011 Tohoku-Oki earthquake. Our preliminary results suggest that the low strength of JFAST fault gouge material is caused by the high amount of clay minerals (~ 60% smectite, ~ 14 illite). Clay minerals in the décollement (gouge) sample are partly replaced by newly formed manganese oxide, which precipitated from hydrothermal fluids. Dauphine twins were found in quartz grains of the décollement sample suggesting local high stress possible during seismic loading. Other microstructures cannot be assigned unambiguously to co-seismic or a-seismic faulting processes. The observed scaly clay fabric is consistent with observations in many other plate-boundary fault zones. Significant grain size reduction was found in the fault (decollement) zone sample. But a change in lithology of the fault material cannot be ruled out. Microstructures typical for a-seismic deformation like dissolution-precipitation features (e.g. dissolved grain boundaries, mineral alteration) occur in all JFAST core samples, but more frequently in the décollement sample.
Resumo:
1. Developing a framework for assessing interactions between multiple anthropogenic stressors remains an important goal in environmental research. In coastal ecosystems, the relative effects of aspects of global climate change (e.g. CO2 concentrations) and localized stressors (e.g. eutrophication), in combination, have received limited attention. 2. Using a long-term (11 month) field experiment, we examine how epiphyte assemblages in a tropical seagrass meadow respond to factorial manipulations of dissolved carbon dioxide (CO2(aq)) and nutrient enrichment. In situ CO2(aq) manipulations were conducted using clear, open-top chambers, which replicated carbonate parameter forecasts for the year 2100. Nutrient enrichment consisted of monthly additions of slow-release fertilizer, nitrogen (N) and phosphorus (P), to the sediments at rates equivalent to theoretical maximum rates of anthropogenic loading within the region (1.54 g N/m**2/d and 0.24 g P m**2/d). 3. Epiphyte community structure was assessed on a seasonal basis and revealed declines in the abundance of coralline algae, along with increases in filamentous algae under elevated CO2(aq). Surprisingly, nutrient enrichment had no effect on epiphyte community structure or overall epiphyte loading. Interactions between CO2(aq) and nutrient enrichment were not detected. Furthermore, CO2(aq)-mediated responses in the epiphyte community displayed strong seasonality, suggesting that climate change studies in variable environments should be conducted over extended time-scales. 4. Synthesis. The observed responses indicate that for certain locations, global stressors such as ocean acidification may take precedence over local eutrophication in altering the community structure of seagrass epiphyte assemblages. Given that nutrient-driven algal overgrowth is commonly cited as a widespread cause of seagrass decline, our findings highlight that alternate climate change forces may exert proximate control over epiphyte community structure.