904 resultados para Lipschitzian bounds
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work a switching feedback controller for stick-slip compensation of a 2-DOF mass-spring-belt system which interacts with an energy source of limited power supply (non-ideal case) is developed. The system presents an oscillatory behavior due to the stick-slip friction. As the system equilibrium for a conventional feedback controller is not the origin, a switching control law combining a state feedback term and a discontinuous term is proposed to regulate the position of the mass. The problem of tracking a desired periodic trajectory is also considered. The feedback system is robust with respect to the friction force that is assumed to be within known upper and lower bounds.
Resumo:
The extended linear complementarity problem (XLCP) has been introduced in a recent paper by Mangasarian and Pang. In the present research, minimization problems with simple bounds associated to this problem are defined. When the XLCP is solvable, their solutions are global minimizers of the associated problems. Sufficient conditions that guarantee that stationary points of the associated problems are solutions of the XLCP will be proved. These theoretical results support the conjecture that local methods for box constrained optimization applied to the associated problems could be efficient tools for solving the XLCP. (C) 1998 Elsevier B.V. All rights reserved.
Resumo:
Aggregation disaggregation is used to reduce the analysis of a large generalized transportation problem to a smaller one. Bounds for the actual difference between the aggregated objective and the original optimal value are used to quantify the error due to aggregation and estimate the quality of the aggregation. The bounds can be calculated either before optimization of the aggregated problem (a priori) or after (a posteriori). Both types of the bounds are derived and numerically compared. A computational experiment was designed to (a) study the correlation between the bounds and the actual error and (b) quantify the difference of the error bounds from the actual error. The experiment shows a significant correlation between some a priori bounds, the a posteriori bounds and the actual error. These preliminary results indicate that calculating the a priori error bound is a useful strategy to select the appropriate aggregation level, since the a priori bound varies in the same way that the actual error does. After the aggregated problem has been selected and optimized, the a posteriori bound provides a good quantitative measure for the error due to aggregation.
Resumo:
Although cluster environments have an enormous potential processing power, real applications that take advantage of this power remain an elusive goal. This is due, in part, to the lack of understanding about the characteristics of the applications best suited for these environments. This paper focuses on Master/Slave applications for large heterogeneous clusters. It defines application, cluster and execution models to derive an analytic expression for the execution time. It defines speedup and derives speedup bounds based on the inherent parallelism of the application and the aggregated computing power of the cluster. The paper derives an analytical expression for efficiency and uses it to define scalability of the algorithm-cluster combination based on the isoefficiency metric. Furthermore, the paper establishes necessary and sufficient conditions for an algorithm-cluster combination to be scalable which are easy to verify and use in practice. Finally, it covers the impact of network contention as the number of processors grow. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The Capacitated p-median problem (CPMP) seeks to solve the optimal location of p facilities, considering distances and capacities for the service to be given by each median. In this paper we present a column generation approach to CPMP. The identified restricted master problem optimizes the covering of 1-median clusters satisfying the capacity constraints, and new columns are generated considering knapsack subproblems. The Lagrangean/surrogate relaxation has been used recently to accelerate subgradient like methods. In this work the Lagrangean/surrogate relaxation is directly identified from the master problem dual and provides new bounds and new productive columns through a modified knapsack subproblem. The overall column generation process is accelerated, even when multiple pricing is observed. Computational tests are presented using instances taken from real data from Sao Jose dos Campos' city.
Resumo:
We have used the adiabatic hyperspherical approach to determine the energies and wave functions of the ground state and first excited states of a two-dimensional D- ion in the presence of a magnetic field. Using a modified hyperspherical angular variable, potential energy curves are analytically obtained, allowing an accurate determination of the energy levels of this system. Upper and lower bounds for the ground-state energy have been determined by a non-adiabatic procedure, as the purpose is to improve the accuracy of method. The results are shown to be comparable to the best variational calculations reported in the literature.
Resumo:
In this article we examine an inverse heat convection problem of estimating unknown parameters of a parameterized variable boundary heat flux. The physical problem is a hydrodynamically developed, thermally developing, three-dimensional steady state laminar flow of a Newtonian fluid inside a circular sector duct, insulated in the flat walls and subject to unknown wall heat flux at the curved wall. Results are presented for polynomial and sinusoidal trial functions, and the unknown parameters as well as surface heat fluxes are determined. Depending on the nature of the flow, on the position of experimental points the inverse problem sometimes could not be solved. Therefore, an identification condition is defined to specify a condition under which the inverse problem can be solved. Once the parameters have been computed it is possible to obtain the statistical significance of the inverse problem solution. Therefore, approximate confidence bounds based on standard statistical linear procedure, for the estimated parameters, are analyzed and presented.
Resumo:
In some practical problems, for instance in the control systems for the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. New necessary and sufficient linear matrix inequalities (LMI) conditions for the design of state-derivative feedback for multi-input (MI) linear systems are proposed. For multi-input/multi-output (MIMO) linear time-invariant or time-varying plants, with or without uncertainties in their parameters, the proposed methods can include in the LMI-based control designs the specifications of the decay rate, bounds on the output peak, and bounds on the state-derivative feedback matrix K. These design procedures allow new specifications and also, they consider a broader class of plants than the related results available in the literature. The LMIs, when feasible, can be efficiently solved using convex programming techniques. Practical applications illustrate the efficiency of the proposed methods.
Resumo:
We investigate the existence of anomalous Higgs boson couplings, H gamma gamma and HZ gamma, through the analysis of the process e(+)e(-) gamma gamma gamma at LEP2 energies. We suggest some kinematical cuts to improve the signal to background ratio and determine the capability of LEP2 to impose bounds on those couplings by looking for a Higgs boson signal in this reaction.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper we get some lower bounds for the number of critical periods of families of centers which are perturbations of the linear one. We give a method which lets us prove that there are planar polynomial centers of degree l with at least 2[(l - 2)/2] critical periods as well as study concrete families of potential, reversible and Lienard centers. This last case is studied in more detail and we prove that the number of critical periods obtained with our approach does not. increases with the order of the perturbation. (C) 2007 Elsevier Ltd. All rights reserved.