978 resultados para Leukotriene Biosynthesis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

[15-(CH3)-C-13-H-2]-dihydro-epi-deoxyarteannuin B (4a) has been fed to intact Artemisia annua plants via the root and three labeled metabolites (17a-19a) have been identified by 1D- and 2D-NMR spectroscopies. The in vivo transformations of 4a in A. annua are proposed to involve enzymatically-mediated processes in addition to possible spontaneous autoxidation. In the hypothetical spontaneous autoxidation pathway, the tri-substituted double bond in 4a appears to have undergone 'ene-type' reaction with oxygen to form an allylic hydroperoxide, which subsequently rearranges to the allylic hydroxyl group in the metabolite 3 alpha-hydroxy-dihydro-epi-deoxyarteannuin B (17a). In the enzymatically-mediated pathways, compound 17a has then been converted to its acetyl derivative, 3 alpha-acetoxy-dihydro-epi-deoxyarteannuin B (18a), while oxidation of 4a at the 'unactivated' 9-position has yielded 9 beta-hydroxy-dihydro-epi-deoxyarteannuin B (19a). Although all of the natural products artemisinin ( 1), arteannuin K ( 7), arteannuin L ( 8), and arteannuin M ( 9) have been suggested previously as hypothetical metabolites from dihydro-epi-deoxyarteannuin B in A. annua, none were isolated in labeled form in this study. It is argued that the nature of the transformations undergone by compound 4a are more consistent with a degradative metabolism, designed to eliminate this compound from the plant, rather than with a role as a late precursor in the biosynthesis of artemisinin or other natural products from A. annua. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Senescence of plant organs is a genetically controlled process that regulates cell death to facilitate nutrient recovery and recycling, and frequently precedes, or is concomitant with, ripening of reproductive structures. In Arabidopsis thaliana, the seeds are contained within a silique, which is itself a photosynthetic organ in the early stages of development and undergoes a programme of senescence prior to dehiscence. A transcriptional analysis of the silique wall was undertaken to identify changes in gene expression during senescence and to correlate these events with ultrastructural changes. The study revealed that the most highly up-regulated genes in senescing silique wall tissues encoded seed storage proteins, and the significance of this finding is discussed. Global transcription profiles of senescing siliques were compared with those from senescing Arabidopsis leaf or petal tissues using microarray datasets and metabolic pathway analysis software (MapMan). In all three tissues, members of NAC and WRKY transcription factor families were up-regulated, but components of the shikimate and cell-wall biosynthetic pathways were down-regulated during senescence. Expression of genes encoding ethylene biosynthesis and action showed more similarity between senescing siliques and petals than between senescing siliques and leaves. Genes involved in autophagy were highly expressed in the late stages of death of all plant tissues studied, but not always during the preceding remobilization phase of senescence. Analyses showed that, during senescence, silique wall tissues exhibited more transcriptional features in common with petals than with leaves. The shared and distinct regulatory events associated with senescence in the three organs are evaluated and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study was analyzed the effect of crop year and harvesting time on the fatty acid composition of cv. Picual virgin olive oil. The study was carried out during the fruit ripening period for three crop seasons. The mean fatty acid composition of Picual oils was determined. The oils contained palmitic acid (11.9%), oleic acid (79.3%), and linoleic acid (2.95%). The content of palmitic acid and saturated fatty acids decreased during fruit ripening while oleic and linoleic acids increased. The amount of stearic and linolenic acids decreased. The amount of saturated acids, palmitic and stearic, and the polyunsaturated acids linoleic and linolenic was dependent on the time of harvest, whereas the amount of oleic acid varied with the crop year. The differences observed between crop years for both palmitic and linoleic acid may be explained by the differences in the temperature during oil biosynthesis and by the amount of summer rainfall for oleic acid content. A significant relationship was observed between the MUFA/PUFA ratio and the oxidative stability measured by the Rancimat method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Olive fruits of three of the most important Spanish and Italian cultivars, 'Picual', `Hojiblanca' and 'Frantoio', were harvested at bi-weekly periods during three crop seasons to study their development and ripening process. Fresh and dry weights and ripening index were determined for fruit, while dry matter, oil and moisture contents were determined in both fruit and pulp (flesh). Fruit growth rate and oil accumulation were calculated. Each olive cultivar showed a different ripening pattern, 'Hojiblanca' being the last one to maturate. Fruit weight increased, decreasing its growth rate from the middle of November. Dry matter and moisture contents decreased during ripening in pulp and fruit, 'Hojiblanca' showing the highest values for both. Oil content, when expressed on a fresh weight basis, increased in all cultivars, although for the last time period showed variations due to climatic conditions. During ripening, oil content on a dry weight basis increased in fruit, but oil biosynthesis in flesh ceased from November. Olive fruits presented lower oil and higher dry matter contents in the year of lowest rainfall. Therefore fruit harvesting should be carried out from the middle of November in order to obtain the highest oil yield and avoid natural fruit drop. (C) 2004 Society of Chemical Industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Daphnia magna is a key invertebrate in the freshwater environment and is used widely as a model in ecotoxicological measurements and risk assessment. Understanding the genomic responses of D. magna to chemical challenges will be of value to regulatory authorities worldwide. Here we exposed D. magna to the insecticide methomyl and the herbicide propanil to compare phenotypic effects with changes in mRNA expression levels. Both pesticides are found in drainage ditches and surface water bodies standing adjacent to crops. Methomyl, a carbamate insecticide widely used in agriculture, inhibits acetylcholinesterase, a key enzyme in nerve transmission. Propanil, an acetanilide herbicide, is used to control grass and broad-leaf weeds. The phenotypic effects of single doses of each chemical were evaluated using a standard immobilisation assay. Immobilisation was linked to global mRNA expression levels using the previously estimated 48h-EC(1)s, followed by hybridization to a cDNA microarray with more than 13,000 redundant cDNA clones representing >5000 unique genes. Following exposure to methomyl and propanil, differential expression was found for 624 and 551 cDNAs, respectively (one-way ANOVA with Bonferroni correction, Pbiosynthesis (e.g., ribosomal proteins, transcription factors). Methomyl induced the transcription of genes involved in specific processes such as ion homeostasis and xenobiotic metabolism. Propanil highly promoted haemoglobin synthesis and up-regulated genes specifically related to defence mechanisms (e.g., innate immunity response systems) and neuronal pathways. Pesticide-specific toxic responses were found but there is little evidence for transcriptional responses purely restricted to genes associated with the pesticide target site or mechanism of toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae). On the basis of these sequences alone, the E-Pae strains were identical to the Pae type-strain (I-Pae), isolated from leaf spots on Indian horse chestnut in India in 1969. The phylogenetic analyses also showed that Pae belongs to a distinct clade of P. syringae pathovars adapted to woody hosts. We generated genome-wide Illumina sequence data from the three E-Pae strains and one strain of I-Pae. Comparative genomic analyses revealed pathovar-specific genomic regions in Pae potentially implicated in virulence on a tree host, including genes for the catabolism of plant-derived aromatic compounds and enterobactin synthesis. Several gene clusters displayed intra-pathovar variation, including those encoding type IV secretion, a novel fatty acid biosynthesis pathway and a sucrose uptake pathway. Rates of single nucleotide polymorphisms in the four Pae genomes indicate that the three E-Pae strains diverged from each other much more recently than they diverged from I-Pae. The very low genetic diversity among the three geographically distinct E-Pae strains suggests that they originate from a single, recent introduction into Britain, thus highlighting the serious environmental risks posed by the spread of an exotic plant pathogenic bacterium to a new geographic location. The genomic regions in Pae that are absent from other P. syringae pathovars that infect herbaceous hosts may represent candidate genetic adaptations to infection of the woody parts of the tree.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maculalactone A is the most abundant secondary metabolite in Kyrtuthrix maculans, a marine cyanobacterium found in the mid-high shore of moderately exposed to sheltered rocky shores in Hong Kong and South East Asia. This species appears to survive as pure colonies forming distinct black zones on the rock. Maculalactone A may provide K. maculans with a chemical defense against several marine organisms, including the common grazer, Chlorostoma argyrostoma and settlement by larvae of the barnacles, Tetraclita japonica, Balanus amphitrite and Ibla cumingii. The natural concentration of maculalactone A varied with season and also with tidal height on the shore and although a strong positive linear correlation was observed between maculalactone A concentration and herbivore grazing pressure, manipulative experiments demonstrated that grazing pressure was not directly responsible for inducing the biosynthesis of this metabolite. The potential of maculalactone A as a natural marine anti-fouling agent (i.e. as an alternative to environmentally-damaging copper- and tin-based anti-fouling paints) was investigated after achieving a gram-scale synthesis of this compound. Preliminary field trials with anti-fouling paints which contained synthetic maculalactone A as the active principle have confirmed that this compound seems to have a specific activity against molluscan settlers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have been using Virus-Induced Gene Silencing (VIGS) to test the function of genes that are candidates for involvement in floral senescence. Although VIGS is a powerful tool for assaying the effects of gene silencing in plants, relatively few taxa have been studied using this approach, and most that have are in the Solanaceae. We typically use silencing of phytoene desaturase (PDS) in preliminary tests of the feasibility of using VIGS. Silencing this gene, whose product is involved in carotene biosynthesis, results in a characteristic photobleaching phenotype in the leaves. We have found that efficient silencing requires the use of fragments that are more than 90% homologous to the target gene. To simplify testing the effectiveness of VIGS in a range of species, we designed a set of universal primers to a region of the PDS gene that is highly conserved among species, and that therefore allows an investigator to isolate a fragment of the homologous PDS gene from the species of interest. We report the sequences of these primers and the results of VIGS experiments in horticultural species from the Asteraceae, Leguminosae, Balsaminaceae and Solanaceae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-cell analysis is essential for understanding the processes of cell differentiation and metabolic specialisation in rare cell types. The amount of single proteins in single cells can be as low as one copy per cell and is for most proteins in the attomole range or below; usually considered as insufficient for proteomic analysis. The development of modern mass spectrometers possessing increased sensitivity and mass accuracy in combination with nano-LC-MS/MS now enables the analysis of single-cell contents. In Arabidopsis thaliana, we have successfully identified nine unique proteins in a single-cell sample and 56 proteins from a pool of 15 single-cell samples from glucosinolate-rich S-cells by nanoLC-MS/MS proteomic analysis, thus establishing the proof-of-concept for true single-cell proteomic analysis. Dehydrin (ERD14_ARATH), two myrosinases (BGL37_ARATH and BGL38_ARATH), annexin (ANXD1_ARATH), vegetative storage proteins (VSP1_ARATH and VSP2_ARATH) and four proteins belonging to the S-adenosyl-l-methionine cycle (METE_ARATH, SAHH1_ARATH, METK4_ARATH and METK1/3_ARATH) with associated adenosine kinase (ADK1_ARATH), were amongst the proteins identified in these single-S-cell samples. Comparison of the functional groups of proteins identified in S-cells with epidermal/cortical cells and whole tissue provided a unique insight into the metabolism of S-cells. We conclude that S-cells are metabolically active and contain the machinery for de novo biosynthesis of methionine, a precursor for the most abundant glucosinolate glucoraphanine in these cells. Moreover, since abundant TGG2 and TGG1 peptides were consistently found in single-S-cell samples, previously shown to have high amounts of glucosinolates, we suggest that both myrosinases and glucosinolates can be localised in the same cells, but in separate subcellular compartments. The complex membrane structure of S-cells was reflected by the presence of a number of proteins involved in membrane maintenance and cellular organisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthocyanins are flavonoid pigments imparting red, blue, or purple pigmentation to fruits, flowers and foliage. These compounds are powerful antioxidants in vitro, and are widely believed to contribute to human health. The fruit of the domestic apple (Malus x domestica) is a popular and important source of nutrients, and is considered one of the top ‘functional foods’—those foods that have inherent health-promoting benefits beyond basic nutritional value. The pigmentation of typical red apple fruits results from accumulation of anthocyanin in the skin. However, numerous genotypes of Malus are known that synthesize anthocyanin in additional fruit tissues including the core and cortex (flesh). Red-fleshed apple genotypes are an attractive starting point for development of novel varieties for consumption and nutraceutical use through traditional breeding and biotechnology. However, cultivar development is limited by lack of characterization of the diversity of genetic backgrounds showing this trait. We identified and cataloged red-fleshed apple genotypes from four Malus diversity collections representing over 3,000 accessions including domestic cultivars, wild species, and named hybrids. We found a striking range of flesh color intensity and pattern among accessions, including those carrying the MYB10 R 6 allele conferring ectopic expression of a key transcriptional regulator of anthocyanin biosynthesis. Although MYB10 R 6 was strongly associated with red-fleshed fruit among genotypes, this allele was neither sufficient nor required for this trait in all genotypes. Nearly all red-fleshed accessions tested could be traced back to ‘Niedzwetzkyana’, a presumed natural form of M. sieversii native to central Asia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xylan, a hemicellulosic component of the plant cell wall, is one of the most abundant polysaccharides in nature. In contrast to dicots, xylan in grasses is extensively modified by alpha-(1,2)- and alpha-(1,3)-linked arabinofuranose. Despite the importance of grass arabinoxylan in human and animal nutrition and for bioenergy, the enzymes adding the arabinosyl substitutions are unknown. Here we demonstrate that knocking-down glycosyltransferase (GT) 61 expression in wheat endosperm strongly decreases alpha-(1,3)-linked arabinosyl substitution of xylan. Moreover, heterologous expression of wheat and rice GT61s in Arabidopsis leads to arabinosylation of the xylan, and therefore provides gain-of-function evidence for alpha-(1,3)-arabinosyltransferase activity. Thus, GT61 proteins play a key role in arabinoxylan biosynthesis and therefore in the evolutionary divergence of grass cell walls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The galE gene of Streptomyces lividans was used to probe a cosmid library harbouring Brucella melitensis 16M DNA and the nucleotide sequence of a 2.5 kb ClaI fragment which hybridised was determined. An open reading frame encoding a predicted polypeptide with significant homology to UDP-galactose-4-epimerases of Brucella arbortus strain 2308 and other bacterial species was identified. DNA sequences flanking the B. melitensis galE gene shared no identity with other gal genes and, as for B. abortus, were located adjacent to a mazG homologue. A plasmid which encoded the B. melitensis galE open reading frame complemented a galE mutation in Salmonella typhimurium LB5010, as shown by the restoration of smooth lipopolysaccharide (LPS) biosynthesis, sensitivity to phage P22 infection and restoration of UDP-galactose-4-epimerase activity. The galE gene on the B. melitensis 16M chromosome was disrupted by insertional inactivation and these mutants lacked UDP-galactose-4-epimerase activity but no discernible differences in LPS structure between parent and the mutants were observed. One B. melitensis 16M galE mutant, Bm92, was assessed for virulence in CD-1 and BALB/c mice and displayed similar kinetics of invasion and persistence in tissues compared with the parent bacterial strain. CD-1 mice immunised with B. melitensis 16M galE were protected against B. melitensis 16M challenge. Crown Copyright (C) 1999 Published by Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucosinolates are multi-functional plant secondary metabolites which play a vital role in plant defence and are, as dietary compounds, important to human health and livestock well-being. Knowledge of the tissue-specific regulation of their biosynthesis and accumulation is essential for plant breeding programs. Here, we report that in Arabidopsis thaliana, glucosinolates are accumulated differentially in specific cells of reproductive organs. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), distribution patterns of three selected compounds, 4-methylsulfinylbutyl (glucoraphanin), indol-3-ylmethyl (glucobrassicin), and 4-benzoyloxybutyl glucosinolates, were mapped in the tissues of whole flower buds, sepals and siliques. The results show that tissue localization patterns of aliphatic glucosinolate glucoraphanin and 4-benzoyloxybutyl glucosinolate were similar, but indole glucosinolate glucobrassicin had different localisation, indicating a possible difference in function. The high resolution images obtained by a complementary approach, cryo-SEM Energy Dispersive X-ray analysis (cryo-SEM-EDX), confirmed increased concentration of sulphur in areas with elevated amounts of glucosinolates, and allowed identifying the cell types implicated in accumulation of glucosinolates. High concentration of sulphur was found in S-cells adjacent to the phloem in pedicels and siliques, indicating the presence of glucosinolates. Moreover, both MALDI MSI and cryo-SEM-EDX analyses indicated accumulation of glucosinolates in cells on the outer surface of the sepals, suggesting that a layer of glucosinolate-accumulating epidermal cells protects the whole of the developing flower, in addition to the S-cells, which protect the phloem. This research demonstrates the high potential of MALDI MSI for understanding the cell-specific compartmentation of plant metabolites and its regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sugars in plants, derived from photosynthesis, act as substrates for energy metabolism and the biosynthesis of complex carbohydrates, providing sink tissues with the necessary resources to grow and to develop. In addition, sugars can act as secondary messengers, with the ability to regulate plant growth and development in response to biotic and abiotic stresses. Sugar-signalling networks have the ability to regulate directly the expression of genes and to interact with other signalling pathways. Photosynthate is primarily transported to sink tissues as sucrose via the phloem. Under phosphorus (P) starvation, plants accumulate sugars and starch in their leaves. Increased loading of sucrose to the phloem under P starvation not only functions to relocate carbon resources to the roots, which increases their size relative to the shoot, but also has the potential to initiate sugar-signalling cascades that alter the expression of genes involved in optimizing root biochemistry to acquire soil phosphorus through increased expression and activity of inorganic phosphate transporters, the secretion of acid phosphatases and organic acids to release P from the soil, and the optimization of internal P use. This review looks at the evidence for the involvement of phloem sucrose in co-ordinating plant responses to P starvation at both the transcriptional and physiological levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a fluorometric assay for heme synthetase, the enzyme that is genetically deficient in erythropoietic protoporphyria. The method, which can readily detect activity in 1 microliter of packed human lymphocytes, is based on the formation of zinc protoheme from protoporphyrin IX. That zinc chelatase and ferrochelatase activities reside in the same enzyme was shown by the competitive action of ferrous ions and the inhibitory effects of N-methyl protoporphyrin (a specific inhibitor of heme synthetase) on zinc chelatase. The Km for zinc was 11 micrograms and that for protoporphyrin IX was 6 microM. The Ki fro ferrous ions was 14 microM. Zinc chelatase was reduced to 15.3% of the mean control activity in lymphocytes obtained from patients with protoporphyria, thus confirming the defect of heme biosynthesis in this disorder. The assay should prove to be useful for determining heme synthetase in tissues with low specific activity and to investigate further the enzymatic defect in protoporphyria.