980 resultados para Leukocyte alkaline phosphatase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selectins play a key role regulating leukocyte migration into tissues by mediating leukocyte tethering (capture) and rolling on inflamed endothelium and/or on adherent leukocytes or platelets. During leukocyte rolling, endothelial E- or P-selectin bind to glycoprotein ligands carrying sialyl Lewis χ (sLex) determinant. P-selectin glycoprotein ligand-1 (PSGL-1) is a common ligand for L-, P- and E-selectin, which sequentially cooperates with CD44 and E- selectin ligand-1 (ESL-1) to roll on E-selectin. During rolling on endothelial selectins, PSGL-1 and CD44 signal through Src family kinases and Syk, leading to αι_β2 integrin partial activation and slow rolling on intercellular adhesion molecule-1 (ICAM-1). Leukocyte exposure to chemokines then leads to firm adhesion. Little information is available on ligands that mediate malignant leukocyte rolling on E- selectin. We defined these ligands on U937 monoblasts by immunoadsorbtion and immunoblotting using mAb raised against CD43, CD44, PSGL-1, sLex/CLA determinants and E-selectin/IgM chimera. Immunoblotting and blot rolling assays demonstrated that PSGL-1, CD43, CD44 and a -125 kDa sLex/CLA positive ligand contribute to support E-seiectin- dependent rolling. This -125 kDa ligand is endoglycan, a member of the CD34 family of sialomucins. Endoglycan was frequently detected by flow cytometry on primary leukemia, lymphoma and multiple myeloma ceils (in -50% of cases). Endoglycan, immunopurified from U937 cells, as well as endoglycan/IgG chimera efficiently supported E-selectin dependent rolling. Membrane fractionation on sucrose gradient demonstrated that endoglycan is expressed in lipid rafts. We tested the hypothesis that it signals, like PSGL-1 and CD44, through Src kinases and the MAPK pathway. Indeed, endoglycan engagement induced Syk and ERK phosphorylation in a iipid raft-dependent manner. Syk activation was dependent on Src kinase activity. Downstream of Syk, endoglycan activated PI3K and Akt as well as Bruton's tyrosine kinase and p38 MAPK. Thus, endoglycan is a ligand for endothelial selectins which may contribute to regulate leukemia, lymphoma and multiple myeloma cell trafficking and interactions with bone marrow microenvironment. - Les sélectines contrôlent la migration tissulaire des leucocytes en assurant leur capture et leur roulement sur l'endothélium vasculaire enflammé et/ou sur des plaquettes ou des leucocytes adhérant à la paroi vasculaire. Lors du roulement leucocytaire, les sélectines endothéliales (E- et P-sélectine) se lient à des ligands porteurs du saccharide sialyl Lewis χ (sLex). PSGL-1 est un ligand commun des sélectines qui coopère avec CD44 et ESL-1 pour permettre la capture et le roulement des neutrophiles. Lorsque PSGL-1 et CD44 se lient aux sélectines endothéliales, elles induisent la phosphorylation des kinases Src et de Syk conduisant à l'activation partielle de l'intégrine aLp2 et au ralentissement des leucocytes sur les sélectines et ICAM-1. Les chimiokines induisent ensuite l'adhésion ferme des leucocytes. Les ligands des sélectines qui assurent le roulement, sur la E-sélectine, des cellules issues d'hémopathies malignes sont peu connus. Nous avons caractérisé ces ligands en les purifiant avec des anticorps dirigés contre CD43, CD44, PSGL-1, sLex/CLA et en utilisant la chimère E-sélectine/IgM. Des tests d'adhésion ont montré que PSGL-1, CD43, CD44 et une glycoprotéine de ~125 kDa soutiennent les interactions cellulaires dépendant de la E- sélectine. Le ligand de -125 kDa a été identifié comme étant l'endoglycan. Il a été détecté, par cytométrie de flux, sur les cellules leucémiques, les cellules de lymphomes ou de myélome multiple, dans ~50% des cas analysés. Sa forme membranaire, immunopurifiée, ou recombinante (endoglycan/lgG) soutient les interactions cellulaires dépendant de la E- sélectine. Nous avons montré qu'il réside dans les rafts lipidiques membranaires puis avons testé l'hypothèse que l'endoglycan, comme PSGL-1 et CD44, induit une signalisation via les kinases de type Src et la voie des MAPK. Nous avons pu observer que son engagement induit la phosphorylation de Syk et de ERK pour autant que la structure des rafts soit préservée. En aval de Syk, l'endoglycan active la PI3K, Akt, Btk et la MAPK p38. Ces résultats montrent que l'endoglycan est un ligand des sélectines endothéliales qui pourrait participer au contrôle du trafic et des interactions des cellules leucémiques, de lymphomes ou de myélomes multiples avec leur microenvironnement. - Le sang est un élément clé du fonctionnement de notre corps. La circulation sanguine permet la communication et le transfert de molécules et cellules entre divers organes. Lors d'une inflammation aiguë due à une réaction allergique, une infection ou une blessure, on observe un oedème local accompagné de rougeur, de chaleur et souvent de douleurs. Au sein des tissus enflammés, on observe des globules blancs (leucocytes) et diverses molécules inflammatoires qui attirent les leucocytes dans les tissus lésés (chimiokines). Le sang est composé de globules rouges, de plaquettes et de leucocytes spécialisés dans les défenses immunes. Pour atteindre le site d'inflammation, les leucocytes doivent quitter la circulation sanguine. Ils utilisent pour cela des molécules d'adhésion présentes à leur surface qui se lient à d'autres molécules d'adhésion de la paroi sanguine. Leurs interactions permettent aux leucocytes de rouler à la surface du vaisseau sanguin. Lorsqu'ils roulent au voisinage d'un site d'inflammation, les leucocytes sont exposés à des chimiokines qui induisent leur arrêt et les dirigent dans les tissus enflammés. Ce processus physiologique est aussi impliqué dans des pathologies telles que l'infarctus, l'artériosclérose ou la thrombose. Il peut être détourné à des fins moins louables par des cellules cancéreuses pour permettre leur dissémination (métastatisation). Dans ce travail de thèse, nous avons caractérisé une molécule d'adhésion qui soutient l'adhésion des leucocytes aux sélectines endothéliales: l'endoglycan. Nous avons observé que cette molécule d'adhésion est fréquemment exprimée par les cellules malignes de nombreuses maladies du sang comme les leucémies, les lymphomes et le myélome multiple. Nous avons également pu montrer que l'endoglycan envoie des signaux à l'intérieur des cellules malignes lorsqu'elles se lient aux sélectines endothéliales. Ces signaux pourraient jouer un rôle déterminant dans la régulation des interactions des cellules malignes avec leur microenvironnement. Elles pourraient peut-être aussi favoriser leur survie et leur prolifération.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purified fractions from a fetal sheep liver extract (FSLE) were investigated, in a murine model, for induction of leukocyte stimulating activities. The fractions FSLE-1 and FSLE-2 induced splenocyte proliferation in vitro in C57Bl/10ScSn (LPS responder) mice comparable to LPS, and in C57Bl/10ScCr (LPS non responder) mice. They also stimulated the release of nitrogen radicals in bone marrow-derived macrophages (BMDM) from several mouse inbred strains including both C57Bl/10ScSn and C57Bl/10ScCr mice. Stimulation of NO production could be blocked by L-NMMA, an inhibitor of iNOS, and enhanced by the simultaneous addition of IFN-gamma. Moreover, stimulation of macrophages by FSLE-1 and FSLE-2 induced a cytostatic effect of the activated macrophages for Abelson 8-1 tumor cells. The stimulatory activity of the purified fractions is partially due to trace amounts of LPS derived from the fetal liver extract which was enriched during purification. Our results may help to explain the beneficial effect of the extract in patients which has been observed clinically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose/Objective: Protective CD8+ T cell responses rely on TCRdependent recognition of immunogenic peptides presented by MHC I. Cytolytic T lymphocytes directed against self/tumor antigens express TCRs of lower affinity/avidity than pathogen-derived T lymphocytes and elicit less protective immune responses due to mechanisms of central and peripheral tolerance. Anti-tumor T cell reactivity can be improved by increasing the TCR-pMHC affinity within physiological limits, while intriguingly further increase in the supraphysiological range (KD < 1 lM) leads to drastic functional declines. We aim at identifying the molecular mechanisms underlying the loss of T cell responsiveness associated with supraphysiological TCRpMHC affinities in order to improve effectiveness of TCR-engineered T cells used in adoptive cell transfer (ACT) cancer immunotherapy. Materials and methods: Using a panel of human CD8+ T cells engineered with TCRs of incremental affinity for the HLA-A2-resticted tumor cancer testis antigen NY-ESO-1, we performed comparative gene expression microarray and TCR-mediated signaling analysis together with membrane receptors level analysis. Results: As compared to cells expressing TCR affinities generating optimal function (KD from 5to 1 lM), those with supraphysiological affinity (KD from 1 lM to 15 nM) had an overall reduced expression of genes implied in signaling, cell activation and proliferation, and showed impaired proximal and distal TCR signaling capacity. This correlated with a decline in surface expression of CD8b, CD28 and activatory TNFR superfamily members. Importantly, expression of inhibitory receptor PD-1 and SHP-1 phosphatase was upregulated in a TCR affinity-dependent manner. Consequently, PD-L1 and SHP-1 blockade restored the function of T cells with high TCRs affinity. Moreover, SHP-1 inhibition also augmented functional efficacy of T cells with TCRs of optimal affinity. Conclusions: Our findings indicate that TCR affinity-associated regulatory mechanisms control T cells responsiveness at various levels to limit potential auto-reactive cytotoxic effects. They also support the development of ACT therapies combined with blockade of inhibitory molecules such as SHP-1 to enhance effectiveness of T cell immunotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein tyrosine phosphatases (PTPs) play an essential role in the regulation of cell differentiation in pathogenic trypanosomatids. In this study, we describe a PTP expressed by the non-pathogenic protozoan Trypanosoma rangeli (TrPTP2). The gene for this PTP is orthologous to the T. brucei TbPTP1 and Trypanosoma cruzi (TcPTP2) genes. Cloning and expression of the TrPTP2 and TcPTP2 proteins allowed anti-PTP2 monoclonal antibodies to be generated in BALB/c mice. When expressed by T. rangeli epimastigotes and trypomastigotes, native TrPTP2 is detected as a ~65 kDa protein associated with the parasite's flagellum. Given that the flagellum is an important structure for cell differentiation in trypanosomatids, the presence of a protein responsible for tyrosine dephosphorylation in the T. rangeli flagellum could represent an interesting mechanism of regulation in this structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological studies have demonstrated that the variability of the clinical response to infection caused by Mycobacterium leprae is associated with host genetic factors. The present study investigated the frequency of human leukocyte antigen (HLA) class II (DRB1) alleles in patients with leprosy from São Luís, Maranhão, Brazil. A case-control study was performed in 85 individuals with leprosy and 85 healthy subjects. All samples were analysed via polymerase chain reaction-sequence specific oligonucleotide probes. The HLA-DRB1*16 allele showed a higher frequency in the group with leprosy [(9.41% vs. 4.12%) odds ratio (OR) = 2.41 95% confidence interval (CI) (0.96-6.08) p = 0.05], whereas the HLA-DRB1*11 allele was less frequent in the group with leprosy [(6.47% vs. 11.76%) OR = 0.51 95% CI (0.23-1.12) p = 0.09]. The frequency of HLA-DRB1* alleles between the control group and leprosy patient subgroups presenting different forms of the disease showed that the HLA-DRB1*16 (16.13% vs. 8.24%, OR = 4.10, CI = 1.27-13.27, p = 0.010) and HLA-DRB1*14 (5% vs. 3.53%, OR = 4.63, CI = 1.00-21.08, p = 0.032) alleles were significantly more frequent in patients with different clinical subtypes of leprosy. The sample size was a limitation in this study. Nevertheless, the results demonstrated the existence of a genetic susceptibility associated with the clinical forms of leprosy. The low frequency of the HLA-DRB1*11 allele should be further studied to investigate the possible protective effect of this allele.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leukocyte Elastase Inhibitor (LEI, also called serpin B1) is a protein involved in apoptosis among other physiological processes. We have previously shown that upon cleavage by its cognate protease, LEI is transformed into L-DNase II, a protein with a pro-apoptotic activity. The caspase independent apoptotic pathway, in which L-DNase II is the final effector, interacts with other pro-apoptotic molecules like Poly-ADP-Ribose polymerase (PARP) or Apoptosis Inducing Factor (AIF). The screening of LEI/L-DNase II interactions showed a possible interaction with several members of the BCL-2 family of proteins which are known to have a central role in the regulation of caspase dependent cell death. In this study, we investigated the regulation of LEI/L-DNase II pathway by two members of this family of proteins: BAX and BCL-2, which have opposite effects on cell survival. We show that, in both BHK and HeLa cells, LEI/L-DNase II can interact with BCL-2 and BAX in apoptotic and non-apoptotic conditions. These proteins which are usually thought to be anti-apoptotic and pro-apoptotic respectively, both inhibit the L-DNase II pro-apoptotic activity. These results give further insight in the regulation of caspase-independent pathways and highlight the involvement of the intracellular environment of a given protein in the determinism of its function. They also add a link between caspase-dependent and independent pathways of apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Endogenous uveitis is a major cause of visual loss mediated by the immune system. The protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene encodes a lymphoid-specific phosphatase that plays a key role in T-cell receptor (TCR) signaling. Two independent functional missense single nucleotide polymorphisms (SNPs) located within the PTPN22 gene (R263Q and R620W) have been associated with different autoimmune disorders. We aimed to analyze for the first time the influence of these PTPN22 genetic variants on endogenous non-anterior uveitis susceptibility. METHODS We performed a case-control study of 217 patients with endogenous non-anterior uveitis and 718 healthy controls from a Spanish population. The PTPN22 polymorphisms (rs33996649 and rs2476601) were genotyped using TaqMan allelic discrimination assays. The allele, genotype, carriers, and allelic combination frequencies were compared between cases and controls with χ(2) analysis or Fisher's exact test. RESULTS Our results showed no influence of the studied SNPs in the global susceptibility analysis (rs33996649: allelic P- value=0.92, odds ratio=0.97, 95% confidence interval=0.54-1.75; rs2476601: allelic P- value=0.86, odds ratio=1.04, 95% confidence interval=0.68-1.59). Similarly, the allelic combination analysis did not provide additional information. CONCLUSIONS Our results suggest that the studied polymorphisms of the PTPN22 gene do not play an important role in the pathophysiology of endogenous non-anterior uveitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Recent studies have reported alterations in protein kinase B (PKB)/Akt and in its downstream target, glycogen synthase kinase 3β, in depression and suicide. The aim of the present study was to investigate possible impairment of the upstream regulators, namely phosphatidylinositol 3-kinase (PI3K) and PTEN. METHODS: The ventral prefrontal cortex (Brodmann's area 11) of 24 suicide victims and 24 drug-free nonsuicide subjects was used. The antemortem diagnoses of major depression disorder were obtained from the institutional records or psychological autopsy, and toxicological analyses were performed. Protein levels of PI3K and PTEN were assayed using the immunoblot method, and the kinase activity of PI3K and Akt was determined by phosphorylation of specific substrates. RESULTS: A decrease was observed in the enzymatic activity of PI3K [ANOVA: F(3, 44) = 9.20; p < 0.001] and Akt1 [ANOVA: F(3, 44) = 13.59; p < 0.001], without any change in protein levels, in both depressed suicide victims and depressed nonsuicide subjects (p < 0.01 and p < 0.002, respectively). PTEN protein levels were increased in the same groups [ANOVA: F(3, 44) = 10.5; p < 0.001]. No change was observed in nondepressed suicide victims. CONCLUSION: This study concludes that attenuation of kinase activity of PKB/Akt in depressed suicide victims may be due to the combined dysregulation of PTEN and PI3K resulting in insufficient phosphorylation of lipid second messengers. The effect is associated with major depression rather than with suicide per se. Given the cellular deficits reported in major depression, the study of enzymes involved in cell survival and neuroplasticity is particularly relevant to neurotrophic factor dysregulation in depression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The pre-treatment of tumor neo-vessels by photodynamic therapy (PDT) was shown to improve the distribution of chemotherapy administered subsequently. However, the precise mechanism by which PDT modifies the tumor vasculature is unknown. We have recently shown that leukocyteendothelial cell interaction was essential for PDT induced drug delivery to normal tissue. Our purpose was to determine if PDT could enhance drug distribution in malignant mesothelioma and if a comparable role for leucocytes existed.Methods: We grew human mesothelioma xenografts (H-meso-1) in the dorsal skinfold chambers of nude mice (n = 28). The rolling, sticking and recruitment of leucocytes was assessed in tumor and normal vessels following PDT (Visudyne 0?4 mg/kg, fluence rate 200 mW/cm2, fluence 60 J/cm2) using intravital microscopy. In parallel, the distribution of a macromolecule (FITC dextran, 2000 kDa) administered after PDT was determined. We compared these variables in control (no PDT), PDT + IgG (non specific antibody) and PDT + pan-selectin antibody (monoclonal P-E-L selectin antibody).Results: PDT significantly enhanced the distribution of FITC dextran in mesothelioma xenografts compared to controls. Interestingly, PDT enhanced the leukocyte-endothelial interaction significantly (rolling and recruitment)in tumor and surrounding normal vessels compared to controls. Leukocyte recruitment was significantly down-regulated by pan-selectin antibodies in tumor tissues. However, the suppression of leucocyte recruitement did not affect the extravasation of FITC-dextran in tumor tissue.Conclusion:PDTpre-treatment of the mesothelioma vasculature can enhance the distribution of macromolecular drugs administered subsequently. However, unlike normal vessels, leukocyte-endothelial cell interaction is not required for PDT induced leakage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG) is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT) remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes. METHODS ZAG action on glucose uptake and insulin action was analyzed. β1 and β2-adrenoreceptor (AR) antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR. RESULTS ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific β1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via β1-AR, whereas inhibition of insulin action is dependent on β2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG. CONCLUSIONS ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a β2-AR- and PP2A-dependent manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The applicability of the protein phosphatase inhibition assay (PPIA) to the determination of okadaic acid (OA) and its acyl derivatives in shellfish samples has been investigated, using a recombinant PP2A and a commercial one. Mediterranean mussel, wedge clam, Pacific oyster and flat oyster have been chosen as model species. Shellfish matrix loading limits for the PPIA have been established, according to the shellfish species and the enzyme source. A synergistic inhibitory effect has been observed in the presence of OA and shellfish matrix, which has been overcome by the application of a correction factor (0.48). Finally, Mediterranean mussel samples obtained from Rı´a de Arousa during a DSP closure associated to Dinophysis acuminata, determined as positive by the mouse bioassay, have been analysed with the PPIAs. The OA equivalent contents provided by the PPIAs correlate satisfactorily with those obtained by liquid chromatography–tandem mass spectrometry (LC–MS/MS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, glyoxalated alkaline lignins with a non-volatile and non-toxic aldehyde, which can be obtained from several natural resources, namely glyoxal, were prepared and characterized for its use in wood adhesives. The preparation method consisted of the reaction of lignin with glyoxal under an alkaline medium. The influence of reaction conditions such as the molar ratio of sodium hydroxide-to-lignin and reaction time were studied relative to the properties of the prepared adducts. The analytical techniques used were FTIR and 1H-NMR spectroscopies, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Results from both the FTIR and 1H-NMR spectroscopies showed that the amount of introduced aliphatic hydroxyl groups onto the lignin molecule increased with increasing reaction time and reached a maximum value at 10 h, and after they began to decrease. The molecular weights remained unchanged until 10 h of reaction time, and then started to increase, possibly due to the repolymerization reactions. DSC analysis showed that the glass transition temperature (Tg) decreased with the introduction of glyoxal onto the lignin molecule due to the increase in free volume of the lignin molecules. TGA analysis showed that the thermal stability of glyoxalated lignin is not influenced and remained suitable for wood adhesives. Compared to the original lignin, the improved lignin is reactive and a suitable raw material for adhesive formula

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this study was to explore the suitability of Vitis vinifera as a raw material and alkaline lignin as a natural binder for fiberboard manufacturing. In the first step, Vitis vinifera was steam- exploded through a thermo-mechanical vapor process in a batch reactor, and the obtained pulp was dried, ground, and pressed to produce the boards. The effects of pretreatment factors and pressing conditions on the chemical composition of the fibers and the physico-mechanical properties of binderless fiberboards were evaluated, and the conditions that optimize these properties were found. A response surface method based on a central composite design and multiple-response optimization was used. The variables studied and their respective variation ranges were: pretreatment temperature (Tr: 190-210ºC), pretreatment time (tr: 5-10 min), pressing temperature (Tp: 190-210ºC), pressing pressure (Pp: 8-16MPa), and pressing time (tp: 3-7min). The results of the optimization step show that binderless fiberboards have good water resistance and weaker mechanical properties. In the second step, fiberboards based on alkaline lignin and Vitis vinifera pulp produced at the optimal conditions determined for binderless fiberboards were prepared and their physico-mechanical properties were tested. Our results show that the addition of about 15% alkaline lignin leads to the production of fiberboards that fully meet the requirements of the relevant standard specifications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Besides polyurethanes and polyesters, phenolic and epoxy resins are the most prominent applications for technical lignins in thermosetting materials. To evaluate the potential application of lignin raw materials in phenol formaldehyde and epoxy resins, three types of alkaline lignins were characterized in terms of their structures and thermal properties. The lignin samples analyzed were kraft lignin (LIG-1), soda–rice straw lignin (LIG-2), and soda-wheat straw lignin (LIG-3). FTIR and 1H-NMR methods were used to determine their structure. Gel permeation chromatography (GPC) was used to determine the molecular weight distribution (MWD). Differential scanning calorimetry (DSC) was used to measure the glass transition temperature (Tg), and thermogravimetric analysis (TGA) to determine the thermal stability of lignin samples. Results showed that kraft lignin (LIG-1) has moderate hydroxyl-group content, is rich in G-type units, and has good thermal stability. These properties make it more suitable for direct use in phenol formaldehyde resins, and it is therefore a good raw material for this purpose. The alkaline soda-rice straw lignin (LIG-2) with a high hydroxyl-group content and excellent thermal stability is most suited to preparing lignin-based epoxy resin