999 resultados para Late Glacial Maximum
Resumo:
We compare a new mid-Pleistocene sea surface temperature (SST) record from the eastern tropical Atlantic to changes in continental ice volume, orbital insolation, Atlantic deepwater ventilation, and Southern Ocean front positions to resolve forcing mechanisms of tropical Atlantic SST during the mid-Pleistocene transition (MPT). At the onset of the MPT, a strong tropical cooling occurred. The change from a obliquity- to a eccentricity-dominated cyclicity in the tropical SST took place at about 650 kyr BP. In orbital cycles, tropical SST changes significantly preceded continental ice-volume changes but were in phase with movements of Southern Ocean fronts. After the onset of large-amplitude 100-kyr variations, additional late glacial warming in the eastern tropical Atlantic was caused by enhanced return flow of warm waters from the western Atlantic driven by strong trade winds. Pronounced 80-kyr variations in tropical SST occurred during the MPT, in phase with and likely directly forced by transitional continental ice-volume variations. During the MPT, a prominent anomalous long-term tropical warming occurred, likely generated by extremely northward displaced Southern Ocean fronts. While the overall pattern of global climate variability during the MPT was determined by changes in mean state and frequency of continental ice volume variations, tropical Atlantic SST variations were primarily driven by early changes in Subantarctic sea-ice extent and coupled Southern Ocean frontal positions.
Resumo:
We present the first circum-East Antarctic chronology for the Holocene, based on 17 radiocarbon dates generated by the accelerator method. Marine sediments from around East Antarctica contain a consistent, high-resolution record of terrigenous (ice-proximal) and biogenic (open-marine) sedimentation during Holocene time. This record demonstrates that biogenic sedimentation beneath the open-marine environment on the continental shelf has been restricted to approximately the past 4 ka, whereas a period of terrigenous sedimentation related to grounding line advance of ice tongues and ice shelves took place between 7 and 4 ka. An earlier period of open-marine (biogenic sedimentation) conditions following the late Pleistocene glacial maximum is recognized from the Prydz Bay (Ocean Drilling Program) record between 10.7 and 7.3 ka. Clearly, the response of outlet systems along the periphery of the East Antarctic ice sheet during the mid-Holocene was expansion. This may have been a direct consequence of climate warming during an Antarctic 'Hypsithermal'. Temperature-accumulation relations for the Antarctic indicate that warming will cause a significant increase in accumulation rather than in ablation. Models that predict a positive mass balance (growth) of the Antarctic ice sheet under global warming are supported by the mid-Holocene data presented herein.
Resumo:
CaCO3 and total organic carbon concentrations, organic matter C/N and carbon isotope ratios, and sediment accumulation rates in late Quaternary sediments from DSDP Site 594 provide information about glacial-interglacial variations in the delivery of organic matter to the Chatham Rise offshore of southeastern New Zealand. Low C/N ratios and nearly constant organic delta13C values of ?23? indicate that marine production dominates organic matter supply in both glacial and interglacial times during oxygen isotope stages 1 through 6 (0-140 ka) and 17 through 19 (660-790 ka). Increased organic carbon mass accumulation rates in isotope stages 2, 4, 6, and 18 record enhanced marine productivity during glacial maxima. Excursions of organic delta13C values to ca. ?29? in portions of isotope stage 2 suggest that the local concentration of dissolved CO2 was occasionally elevated during the last glacial maximum, probably as a result of short periods of lowered sea-surface temperature. Dilution of carbonates by clastic continental sediment generally increases at this location during glacial maxima, but enhanced delivery of land-derived organic matter does not accompany the increased accumulation of clastic sediments.