998 resultados para Lane Detection
Resumo:
The performance of the Xpert MRSA polymerase chain reaction (PCR) assay on pooled nose, groin, and throat swabs (three nylon flocked eSwabs into one tube) was compared to culture by analyzing 5,546 samples. The sensitivity [0.78, 95 % confidence interval (CI) 0.73-0.82] and specificity (0.99, 95 % CI 0.98-0.99) were similar to the results from published studies on separated nose or other specimens. Thus, the performance of the Xpert MRSA assay was not affected by pooling the three specimens into one assay, allowing a higher detection rate without increasing laboratory costs, as compared to nose samples alone.
Resumo:
The paper proposes an approach aimed at detecting optimal model parameter combinations to achieve the most representative description of uncertainty in the model performance. A classification problem is posed to find the regions of good fitting models according to the values of a cost function. Support Vector Machine (SVM) classification in the parameter space is applied to decide if a forward model simulation is to be computed for a particular generated model. SVM is particularly designed to tackle classification problems in high-dimensional space in a non-parametric and non-linear way. SVM decision boundaries determine the regions that are subject to the largest uncertainty in the cost function classification, and, therefore, provide guidelines for further iterative exploration of the model space. The proposed approach is illustrated by a synthetic example of fluid flow through porous media, which features highly variable response due to the parameter values' combination.
Resumo:
To target pharmacological prevention, instruments giving an approximation of an individual patient's risk of developing postoperative delirium are available. In view of the variable clinical presentation, identifying patients in whom prophylaxis has failed (that is, who develop delirium) remains a challenge. Several bedside instruments are available for the routine ward and ICU setting. Several have been shown to have a high specificity and sensitivity when compared with the standard definitions according to DSM-IV-TR and ICD-10. The Confusion Assessment Method (CAM) and a version specifically developed for the intensive care setting (CAM-ICU) have emerged as a standard. However, alternatives allowing grading of the severity of delirium are also available. In many units, the approach to delirium follows a three-step strategy. Initially, non-pharmacological multicomponent strategies are used for primary prevention. As a second step, pharmacological prophylaxis may be added. Perioperative administration of haloperidol has been shown to reduce the severity, but not the incidence, of delirium. Perioperative administration of atypical antipsychotics has been shown to reduce the incidence of delirium in specific groups of patients. In patients with delirium, both symptomatic and causal treatment of delirium need to be considered. So far symptomatic treatment of delirium is primarily based on antipsychotics. Currently, cholinesterase inhibitors cannot be recommended and the data on dexmedetomidine are inconclusive. With the exception of alcohol-withdrawal delirium, there is no role for benzodiazepines in the treatment of delirium. It is unclear whether treating delirium prevents long-term sequelae.
Resumo:
The diagnosis of idiopathic Parkinson's disease (IPD) is entirely clinical. The fact that neuronal damage begins 5-10 years before occurrence of sub-clinical signs, underlines the importance of preclinical diagnosis. A new approach for in-vivo pathophysiological assessment of IPD-related neurodegeneration was implemented based on recently developed neuroimaging methods. It is based on non- invasive magnetic resonance data sensitive to brain tissue property changes that precede macroscopic atrophy in the early stages of IPD. This research aims to determine the brain tissue property changes induced by neurodegeneration that can be linked to clinical phenotypes which will allow us to create a predictive model for early diagnosis in IPD. We hypothesized that the degree of disease progression in IPD patients will have a differential and specific impact on brain tissue properties used to create a predictive model of motor and non-motor impairment in IPD. We studied the potential of in-vivo quantitative imaging sensitive to neurodegeneration- related brain tissue characteristics to detect changes in patients with IPD. We carried out methodological work within the well established SPM8 framework to estimate the sensitivity of tissue probability maps for automated tissue classification for detection of early IPD. We performed whole-brain multi parameter mapping at high resolution followed by voxel-based morphometric (VBM) analysis and voxel-based quantification (VBQ) comparing healthy subjects to IPD patients. We found a trend demonstrating non-significant tissue property changes in the olfactory bulb area using the MT and R1 parameter with p<0.001. Comparing to the IPD patients, the healthy group presented a bilateral higher MT and R1 intensity in this specific functional region. These results did not correlate with age, severity or duration of disease. We failed to demonstrate any changes with the R2* parameter. We interpreted our findings as demyelination of the olfactory tract, which is clinically represented as anosmia. However, the lack of correlation with duration or severity complicates its implications in the creation of a predictive model of impairment in IPD.
Resumo:
We analyze crash data collected by the Iowa Department of Transportation using Bayesian methods. The data set includes monthly crash numbers, estimated monthly traffic volumes, site length and other information collected at 30 paired sites in Iowa over more than 20 years during which an intervention experiment was set up. The intervention consisted in transforming 15 undivided road segments from four-lane to three lanes, while an additional 15 segments, thought to be comparable in terms of traffic safety-related characteristics were not converted. The main objective of this work is to find out whether the intervention reduces the number of crashes and the crash rates at the treated sites. We fitted a hierarchical Poisson regression model with a change-point to the number of monthly crashes per mile at each of the sites. Explanatory variables in the model included estimated monthly traffic volume, time, an indicator for intervention reflecting whether the site was a “treatment” or a “control” site, and various interactions. We accounted for seasonal effects in the number of crashes at a site by including smooth trigonometric functions with three different periods to reflect the four seasons of the year. A change-point at the month and year in which the intervention was completed for treated sites was also included. The number of crashes at a site can be thought to follow a Poisson distribution. To estimate the association between crashes and the explanatory variables, we used a log link function and added a random effect to account for overdispersion and for autocorrelation among observations obtained at the same site. We used proper but non-informative priors for all parameters in the model, and carried out all calculations using Markov chain Monte Carlo methods implemented in WinBUGS. We evaluated the effect of the four to three-lane conversion by comparing the expected number of crashes per year per mile during the years preceding the conversion and following the conversion for treatment and control sites. We estimated this difference using the observed traffic volumes at each site and also on a per 100,000,000 vehicles. We also conducted a prospective analysis to forecast the expected number of crashes per mile at each site in the study one year, three years and five years following the four to three-lane conversion. Posterior predictive distributions of the number of crashes, the crash rate and the percent reduction in crashes per mile were obtained for each site for the months of January and June one, three and five years after completion of the intervention. The model appears to fit the data well. We found that in most sites, the intervention was effective and reduced the number of crashes. Overall, and for the observed traffic volumes, the reduction in the expected number of crashes per year and mile at converted sites was 32.3% (31.4% to 33.5% with 95% probability) while at the control sites, the reduction was estimated to be 7.1% (5.7% to 8.2% with 95% probability). When the reduction in the expected number of crashes per year, mile and 100,000,000 AADT was computed, the estimates were 44.3% (43.9% to 44.6%) and 25.5% (24.6% to 26.0%) for converted and control sites, respectively. In both cases, the difference in the percent reduction in the expected number of crashes during the years following the conversion was significantly larger at converted sites than at control sites, even though the number of crashes appears to decline over time at all sites. Results indicate that the reduction in the expected number of sites per mile has a steeper negative slope at converted than at control sites. Consistent with this, the forecasted reduction in the number of crashes per year and mile during the years after completion of the conversion at converted sites is more pronounced than at control sites. Seasonal effects on the number of crashes have been well-documented. In this dataset, we found that, as expected, the expected number of monthly crashes per mile tends to be higher during winter months than during the rest of the year. Perhaps more interestingly, we found that there is an interaction between the four to three-lane conversion and season; the reduction in the number of crashes appears to be more pronounced during months, when the weather is nice than during other times of the year, even though a reduction was estimated for the entire year. Thus, it appears that the four to three-lane conversion, while effective year-round, is particularly effective in reducing the expected number of crashes in nice weather.
Resumo:
BACKGROUND: Autofluorescence bronchoscopy (AFB) is a highly sensitive tool for the detection of early bronchial cancers. However, its specificity remains limited due to primarily false positive results induced by hyperplasia, metaplasia and inflammation. We have investigated the potential of blue-violet backscattered light to eliminate false positive results during AFB in a clinical pilot study. METHODS: The diagnostic autofluorescence endoscopy (DAFE) system was equipped with a variable band pass filter in the imaging detection path. The backscattering properties of normal and abnormal bronchial mucosae were assessed by computing the contrast between the two tissue types for blue-violet wavelengths ranging between 410 and 490 nm in 12 patients undergoing routine DAFE examination. In a second study including 6 patients we used a variable long pass (LP) filter to determine the spectral design of the emission filter dedicated to the detection of this blue-violet light with the DAFE system. RESULTS: (Pre-)neoplastic mucosa showed a clear wavelength dependence of the backscattering properties of blue-violet light while the reflectivity of normal, metaplastic and hyperplastic autofluorescence positive mucosa was wavelength independent. CONCLUSIONS: Our results showed that the detection of blue-violet light has the potential to reduce the number of false positive results in AFB. In addition we determined the spectral design of the emission filter dedicated to the detection of this blue-violet light with the DAFE system.
Resumo:
Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise, e.g., Fundus photography, optical coherence tomography, computed tomography, and magnetic resonance imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The goal of this paper is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI that was not visible before like vessels and the macula. This paper contributions include automatic detection of the optic disc, the fovea, the optic axis, and an automatic segmentation of the vitreous humor of the eye.
Resumo:
Traffic volume increases and an aging infrastructure create the need for reconstruction, rehabilitation, and maintenance of existing facilities. As more motorists feel that delays should be minimal during highway renewal projects, lane closures that reduce capacity through the work zone should not create unreasonable delays. In order to facilitate the determination of when a lane closure is permitted during the day, some state transportation agencies (STAs) have developed lane closure policies, or strategies, that they use as guidance in determining daily permitted lane closure times. Permitted lane closure times define what times of the day, week, or season a lane closure is allowed on a facility and at a specific location or segment. This research addresses the lane closure policies of several STAs that were reputed to have good lane closures policies or strategies and that were selected by the project advisory committee for further research.
Resumo:
OBJECTIVE: The presence of minority nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 variants prior to antiretroviral therapy (ART) has been linked to virologic failure in treatment-naive patients. DESIGN: We performed a large retrospective study to determine the number of treatment failures that could have been prevented by implementing minority drug-resistant HIV-1 variant analyses in ART-naïve patients in whom no NNRTI resistance mutations were detected by routine resistance testing. METHODS: Of 1608 patients in the Swiss HIV Cohort Study, who have initiated first-line ART with two nucleoside reverse transcriptase inhibitors (NRTIs) and one NNRTI before July 2008, 519 patients were eligible by means of HIV-1 subtype, viral load and sample availability. Key NNRTI drug resistance mutations K103N and Y181C were measured by allele-specific PCR in 208 of 519 randomly chosen patients. RESULTS: Minority K103N and Y181C drug resistance mutations were detected in five out of 190 (2.6%) and 10 out of 201 (5%) patients, respectively. Focusing on 183 patients for whom virologic success or failure could be examined, virologic failure occurred in seven out of 183 (3.8%) patients; minority K103N and/or Y181C variants were present prior to ART initiation in only two of those patients. The NNRTI-containing, first-line ART was effective in 10 patients with preexisting minority NNRTI-resistant HIV-1 variant. CONCLUSION: As revealed in settings of case-control studies, minority NNRTI-resistant HIV-1 variants can have an impact on ART. However, the implementation of minority NNRTI-resistant HIV-1 variant analysis in addition to genotypic resistance testing (GRT) cannot be recommended in routine clinical settings. Additional associated risk factors need to be discovered.
Resumo:
The recent approval of crizotinib for the treatment of anaplastic lymphoma kinase (ALK)-rearranged advanced non-small cell lung cancer (NSCLC) in the US and other countries has provoked intense interest in ALK rearrangements as oncogenic drivers, and promises to revolutionise the way in which NSCLC is diagnosed and treated. Here, we review clinical data to date for the use of crizotinib to treat patients with advanced, ALK-positive NSCLC and consider issues surrounding the detection of ALK-positivity including the use of fluorescence in situ hybridisation and the other potential techniques available, and their suitability for ALK screening. We also discuss the emergence of resistance to crizotinib therapy and the range of other ALK inhibitors currently in development.