944 resultados para LOW-ENERGY LASER
Resumo:
Low-energy electron diffraction, X-ray photoelectron spectroscopy, high-resolution electron energy-loss spectroscopy, scanning tunneling microscopy, and temperature-programmed reaction spectrometry results are reported for the structural and reactive behavior of alumina films grown on Pt(111) as a function of thickness and oxidation temperature. Submonolayer Al films undergo compete oxidation at 300 K, annealing at 1100 K resulting in formation of somewhat distorted crystalline gamma-alumina, Thicker deposits require 800 K oxidation to produce Al2O3, and these too undergo crystallization at 800 K, yielding islands of apparently undistorted gamma-alumina on the Pt(111) surface. Oxidation of a p(2 x 2) Pt3Al surface alloy occurs only at>800 K, resulting in Al extraction, These alumina films on Pt(lll) markedly increase the coverage of adsorbed SO4 resulting from SO2 chemisorption onto oxygen-precovered surfaces. This results in enhanced propane uptake and subsequent reactivity relative to SO4/Pt(111). A bifunctional mechanism is proposed to account for our observations, and the relevance of these to an understanding of the corresponding dispersed systems is discussed.
Thermomechanical analyses of ultrasonic welding process using thermal and acoustic softening effects
Resumo:
Ultrasonic welding process is a rapid manufacturing process used to weld thin layers of metal at low temperatures and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, a very first attempt has been made to simulate the ultrasonic welding of metals by taking into account both of these effects (surface and volume). A phenomenological material model has been proposed which incorporates these two effects (i.e. surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects a friction law with variable coefficient of friction dependent upon contact pressure, slip, temperature and number of cycles has been derived from experimental friction tests. Thermomechanical analyses of ultrasonic welding of aluminium alloy have been performed. The effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic vibration, and velocity of welding sonotrode on the friction work at the weld interface are being analyzed. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented showing a good agreement. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
Ultrasonic welding (consolidation) process is a rapid manufacturing process that is used to join thin layers of metal at low temperature and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, an attempt has been made to simulate the ultrasonic welding of metals by taking into account these effects (surface and volume). A phenomenological material model has been proposed, which incorporates these two effects (i.e., surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects, a friction law with variable coefficient of friction that is dependent on contact pressure, slip, temperature, and number of cycles has been derived from experimental friction tests. The results of the thermomechanical analyses of ultrasonic welding of aluminum alloy have been presented. The goal of this work is to study the effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic oscillation, and velocity of welding sonotrode on the friction work at the weld interface. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented, showing a good agreement. Copyright © 2009 by ASME.
Resumo:
The structure of a Pt(111) electrode after treatment in an electrolyte and subsequent transfer to an UHV chamber was investigated ex situ by combined low energy electron diffraction (LEED), reflection high energy electron diffraction (RHEED), and Auger electron spectroscopy (AES). Treatment of the sample in a CO saturated 0.1 M HClO solution at potentials between -0.2 and 0.2 V versus Ag/AgCl caused a maximum CO coverage of about 0.75 as probed by cyclic voltammetry, which dropped by partial desorption to about 0.25 upon transfer to the UHV chamber. This adlayer exhibited a (distorted) 3×3 R30° pattern by RHEED (but not with LEED) exhibiting an average domain size of 2.3 nm at room temperature. This is identified with the same phase reported before from gas phase studies, as also corroborated by the similarities of the vibrational spectroscopic data. The same structure (albeit even more poorly ordered) was found after dissociative adsorption of methanol.
Resumo:
Bond formation and rearrangement reactions in gas phase electron attachment were studied through dissociative electron attachment (DEA) to pentafluorotoluene (PFT), pentafluoroaniline (PFA) and pentafluorophenol (PFP) in the energy range 0-14 eV. In the case of PFA and PFP, the dominant processes involve formation of [M - HF](-) through the loss of neutral HF. This fragmentation channel is most efficient at low incident electron energy and for PFP it is accompanied by a substantial conformational change of the anionic fragment. At higher energy, HF loss is also observed as well as a number of other fragmentation processes. Thermochemical threshold energies have been computed for all the observed fragments and classical trajectories of the electron attachment process were calculated to elucidate the fragmentation mechanisms. For the dominant reaction channel leading to the loss of HF from PFP, the minimum energy path was calculated using the nudged elastic band method.
Resumo:
Ultrasonic consolidation process is a rapid manufacturing process used to join thin layers of metal at low temperatures and low energy consumption. In this work, finite element method has been used to simulate the ultrasonic consolidation of Aluminium alloys 6061 (AA-6061) and 3003 (AA-3003). A thermomechanical material model has been developed in the framework of continuum cyclic plasticity theory which takes into account both volume (acoustic softening) and surface (thermal softening due to friction) effects. A friction model based on experimental studies has been developed, which takes into account the dependence of coefficient of friction upon contact pressure, amount of slip, temperature and number of cycles. Using the developed material and friction model ultrasonic consolidation (UC) process has been simulated for various combinations of process parameters involved. Experimental observations are explained on the basis of the results obtained in the present study. The current research provides the opportunity to explain the differences of the behaviour of AA-6061 and AA-3003 during the ultrasonic consolidation process. Finally, trends of the experimentally measured fracture energies of the bonded specimen are compared to the predicted friction work at the weld interface resulted from the simulation at similar process condition. Similarity of the trends indicates the validity of the developed model in its predictive capability of the process. © 2008 Materials Research Society.
Resumo:
In a recent article (J. Am. Chem. Soc. 2011, 133, 20186) we investigated the initial spatial distribution of dry excess electrons in a series of room-temperature ionic liquids (RTILs). Perhaps unexpectedly, we found that in some alkylammonium-based systems the excess negative charge resided on anions and not on the positive cations. Following on these results, in the current paper we describe the time evolution of an excess electronic charge introduced in alkylammonium- and pyrrolidinium-based ionic liquids coupled with the bis(trifluoromethylsulfonyl)amide ([TfN]) anion. We find that on a 50 fs time scale an initially delocalized excess electron localizes on a single [TfN] anion which begins a fragmentation process. Low-energy transitions have a very different physical origin on the several femtoseconds time scale when compared to what occurs on the picosecond time scale. At time zero, these are intraband transitions of the excess electron. However after 40 fs when the excess electronic charge localizes on a single anion, these transitions disappear, and the spectrum is dominated by electron-transfer transitions between the fragments of the doubly charged breaking anion. © 2013 American Chemical Society.
Resumo:
We report on a low-damage method for direct and rapid fabrication of arrays of epitaxial BiFeO3(BFO) nanoislands. An array of aluminium dots is evaporated through a stencil mask on top of an epitaxial BiFeO3 thin film. Low energy focused ion beam milling of an area several microns wide containing the array-covered film leads to removal of the bismuth ferrite in between the aluminium-masked dots. By chemical etching of the remaining aluminium, nanoscale epitaxial bismuth ferrite islands with diameter ∼250 nm were obtained. Piezoresponse force microscopy showed that as-fabricated structures exhibited good piezoelectric and ferroelectric properties, with polarization state retention of several days.
Resumo:
We present a first principles molecular dynamics (FPMD) study of the interaction of low energy, positively charged, carbon (C+) projectiles with amorphous solid water clusters at 30 K. Reactions involving the carbon ion at an initial energy of 11 eV and 1.7 eV with 30-molecule clusters have been investigated. Simulations indicate that the neutral isoformyl radical, COH, and carbon monoxide, CO, are the dominant products of these reactions. All these reactions are accompanied by the transfer of a proton from the reacting water molecule to the ice, where it forms a hydronium ion. We find that COH is formed either via a direct, "knock-out", mechanism following the impact of the C+ projectile upon a water molecule or by creation of a COH_2^+ intermediate. The direct mechanism is more prominent at higher energies. CO is generally produced following the dissociation of COH. More frequent production of the formyl radical, HCO, is observed here than in gas phase calculations. A less commonly occurring product is the dihydroxymethyl, CH(OH)_2, radical. Although a minor result, its existence gives an indication of the increasing chemical complexity which is possible in such heterogeneous environments.
Resumo:
The R-matrix method describing the scattering of low-energy electrons by complex atoms and ions is extended to include terms of the Breit-Pauli Hamiltonian. An application is made to the astrophysically important 1s 2s S-1s 2s2p P transition in Fe XXIII, where in the most accurate calculations carried out all terms of the 1s 2s, 1s2s2p and 1s2p configurations are included in the expansion describing the collision. This gives up to 28 coupled channels for each total angular momentum and parity which are solved on a CRAY-1. The collision strengths are increased by more than a factor of two from their non-relativistic values at all energies considered.
Resumo:
Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A'-resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons.
Resumo:
Energy consumption and total cost of ownership are daunting challenges for Datacenters, because they scale disproportionately with performance. Datacenters running financial analytics may incur extremely high operational costs in order to meet performance and latency requirements of their hosted applications. Recently, ARM-based microservers have emerged as a viable alternative to high-end servers, promising scalable performance via scale-out approaches and low energy consumption. In this paper, we investigate the viability of ARM-based microservers for option pricing, using the Monte Carlo and Binomial Tree kernels. We compare an ARM-based microserver against a state-of-the-art x86 server. We define application-related but platform-independent energy and performance metrics to compare those platforms fairly in the context of datacenters for financial analytics and give insight on the particular requirements of option pricing. Our experiments show that through scaling out energyefficient compute nodes within a 2U rack-mounted unit, an ARM-based microserver consumes as little as about 60% of the energy per option pricing compared to an x86 server, despite having significantly slower cores. We also find that the ARM microserver scales enough to meet a high fraction of market throughput demand, while consuming up to 30% less energy than an Intel server
Resumo:
Objective
Based on the theory of incentive sensitization, the aim of this study was to investigate differences in attentional processing of food-related visual cues between normal-weight and overweight/obese males and females.
Methods
Twenty-six normal-weight (14M, 12F) and 26 overweight/obese (14M, 12F) adults completed a visual probe task and an eye-tracking paradigm. Reaction times and eye movements to food and control images were collected during both a fasted and fed condition in a counterbalanced design.
Results
Participants had greater visual attention towards high-energy-density food images compared to low-energy-density food images regardless of hunger condition. This was most pronounced in overweight/obese males who had significantly greater maintained attention towards high-energy-density food images when compared with their normal-weight counterparts however no between weight group differences were observed for female participants.
Conclusions
High-energy-density food images appear to capture visual attention more readily than low-energy-density food images. Results also suggest the possibility of an altered visual food cue-associated reward system in overweight/obese males. Attentional processing of food cues may play a role in eating behaviors thus should be taken into consideration as part of an integrated approach to curbing obesity.
Resumo:
The solubility of carbon dioxide in five tetraalkylphosphonium superbase ionic liquids, namely the trihexyltetradecylphoshonium phenoxide, trihexyltetradecylphoshonium benzotriazolide, trihexyltetradecylphoshonium benzimidazolide, trihexyltetradecylphoshonium 1,2,3-triazolide, and trihexyltetradecylphoshonium 1,2,4-triazolide was studied experimentally under dry and wet conditions at 22 A degrees C and at atmospheric pressure, using a gravimetric saturation technique. The effects of anion structure and of the presence or absence of water in the solution on the carbon dioxide solubility were then deduced from the data. H-1 and C-13-NMR spectroscopy and ab initio calculations were also conducted to probe the interactions in these solutions, as carbon dioxide and water can compete in the ionic liquid structure during the absorption process. Additionally, the viscosity of selected superbase ionic liquids was measured under dry and wet conditions, in the presence or absence of CO2, to evaluate their practical application in carbon dioxide capture processes. Finally, the recyclability of the trihexyltetradecylphoshonium 1,2,4-triazolide under dry and wet conditions was determined to probe the ability of selected solvents to solubilize chemically a high concentration of carbon dioxide and then release it in a low energy demand process.
Resumo:
In the catalytic hydrogenation of hydrocarbons, subsurface hydrogen is known experimentally to be much more reactive than surface hydrogen. We use density functional theory to identify low-energy pathways for the hydrogenation of methyl adsorbed on Ni(111) by surface and subsurface hydrogen. The metastability of subsurface hydrogen with respect to chemisorbed hydrogen is mainly responsible for the low activation barrier for subsurface reactions. (C) 1999 American Institute of Physics.