993 resultados para LATE HOLOCENE CLIMATE CHANGE
Resumo:
The recent decline in the open magnetic flux of the Sun heralds the end of the Grand Solar Maximum (GSM) that has persisted throughout the space age, during which the largest‐fluence Solar Energetic Particle (SEP) events have been rare and Galactic Cosmic Ray (GCR) fluxes have been relatively low. In the absence of a predictive model of the solar dynamo, we here make analogue forecasts by studying past variations of solar activity in order to evaluate how long‐term change in space climate may influence the hazardous energetic particle environment of the Earth in the future. We predict the probable future variations in GCR flux, near‐Earth interplanetary magnetic field (IMF), sunspot number, and the probability of large SEP events, all deduced from cosmogenic isotope abundance changes following 24 GSMs in a 9300‐year record.
Resumo:
A radiocarbon-dated multiproxy palaeoenvironmental record from the Lower Thames Valley at Hornchurch Marshes has provided a reconstruction of the timing and nature of vegetation succession against a background of Holocene climate change, relative sea level movement and human activities. The investigation recorded widespread peat formation between c. 6300 and 3900 cal. yr BP (marine ‘regression’), succeeded by evidence for marine incursion. The multiproxy analyses of these sediments, comprising pollen, Coleoptera, diatoms, and plant and wood macrofossils, have indicated significant changes in both the wetland and dryland environment, including the establishment of Alnus (Alder) carr woodland, and the decline of both Ulmus (Elm; c. 5740 cal. yr BP) and Tilia (Lime; c. 5600 cal. yr BP, and 4160–3710 cal. yr BP). The beetle faunas from the peat also suggest a thermal climate similar to that of the present day. At c. 4900 cal. yr BP, Taxus (L.; Yew) woodland colonised the peatland forming a plant community that has no known modern analogue in the UK. The precise reason, or reasons, for this event remain unclear, although changes in peatland hydrology seem most likely. The growth of Taxus on peatland not only has considerable importance for our knowledge of the vegetation history of southeast England, and NW Europe generally, but also has wider implications for the interpretation of Holocene palaeobotanical records. At c. 3900 cal. yr BP, Taxus declined on the peatland surface during a period of major hydrological change (marine incursion), an event also strongly associated with the decline of dryland woodland taxa, including Tilia and Quercus, and the appearance of anthropogenic indicators.
Resumo:
The recent solar minimum was the longest and deepest of the space age, with the lowest average sunspot numbers for nearly a century. The Sun appears to be exiting a grand solar maximum (GSM) of activity which has persisted throughout the space age, and is headed into a significantly quieter period. Indeed, initial observations of solar cycle 24 (SC24) continue to show a relatively low heliospheric magnetic field strength and sunspot number (R), despite the average latitude of sunspots and the inclination of the heliospheric current sheet showing the rise to solar maximum is well underway. We extrapolate the available SC24 observations forward in time by assuming R will continue to follow a similar form to previous cycles, despite the end of the GSM, and predict a very weak cycle 24, with R peaking at ∼65–75 around the middle/end of 2012. Similarly, we estimate the heliospheric magnetic field strength will peak around 6nT. We estimate that average galactic cosmic ray fluxes above 1GV rigidity will be ∼10% higher in SC24 than SC23 and that the probability of a large SEP event during this cycle is 0.8, compared to 0.5 for SC23. Comparison of the SC24 R estimates with previous ends of GSMs inferred from 9300 years of cosmogenic isotope data places the current evolution of the Sun and heliosphere in the lowest 5% of cases, suggesting Maunder Minimum conditions are likely within the next 40 years.
Resumo:
The rate and magnitude of predicted climate change require that we urgently mitigate emissions or sequester carbon on a substantial scale in order to avoid runaway climate change. Geo- and bioengineering solutions are increasingly proposed as viable and practical strategies for tackling global warming. Biotechnology companies are already developing transgenic “super carbon-absorbing” trees, which are sold as a cost-effective and relatively low-risk means of sequestering carbon. The question posed in this article is, Do super carbon trees provide real benefits or are they merely a fanciful illusion? It remains unclear whether growing these trees makes sense in terms of the carbon cost of production and the actual storage of carbon. In particular, it is widely acknowledged that “carbon-eating” trees fail to sequester as much carbon as they oxidize and return to the atmosphere; moreover, there are concerns about the biodiversity impacts of large-scale monoculture plantations. The potential social and ecological risks and opportunities presented by such controversial solutions warrant a societal dialogue.
Resumo:
Drawing from the organisational learning and governance literature, this paper assesses four internationally networked governmental and non‐governmental organisations in the UK addressing climate change. We analyse how those concerned understand the climate change crisis, what mechanisms are put in place to address information flows, and what evidence there is of learning through sharing information between the organisational headquarters and their regional offices. The most striking finding is the evidence of learning that largely depends on ad‐hoc informal processes and shadow networks.