966 resultados para LASER-INDUCED CRYSTALLIZATION
Resumo:
In this paper, melt crystallization of poly(ether ether ketone ketone) (PEEKK) under strong electric field was investigated. In the crystal structure of PEEKK, the length of c axis was found to he 1.075 nm, increasing by 7% compared to that of PEEKK crystallized without strong electric field. The molecule chains might take a more extended conformation through the opening of the bridge bond angles by increasing from 124 degrees to 144 degrees under strong electric field in the crystal structure.
Resumo:
The crystallization and phase transformation of amorphous Si3N4 ceramics under high pressure (1.0-5.0 GPa) between 800 and 1700 degreesC were investigated. A greatly enhanced crystallization and alpha-beta transformation of the amorphous Si3N4 ceramics were evident under the high pressure, as characterized by that, at 5.0 GPa, the amorphous Si3N4, began to crystallize at a temperature as low as 1000 degreesC (to transform to alpha modification). The subsequent alpha-beta transformation occurred completed between 1350 and 1420 degreesC after only 20 min of pressing at 5.0 GPa. In contrast, under 0.1 MPa N-2, the identical amorphous materials were stable up to 1400 degreesC without detectable crystallization, and only a small amount of a phase was detected at 1500 degreesC. The crystallization temperature and the alpha-beta transformation temperatures are reduced by 200-350 degreesC compared to that at normal pressure. The enhanced phase transformations of the amorphous Si3N4, were discussed on the basis of thermodynamic and kinetic consideration of the effects of pressure on nucleation and growth.
Resumo:
Changes induced in the crystal structure of PTFE by irradiation at different temperatures have been investigated. In the dose and temperature range examined, the density of PTFE was observed to increase continuously with increasing dose due to the radiation-induced increase in crystallinity, while after post-irradiation annealing at 380-degrees-C, the density was observed to increase for samples irradiated at 20-degrees-C, and to begin to decrease after a certain dose for samples irradiated at 150 and 200-degrees-C. On the basis of the observation of radiation-induced separation of the melting peak of PTFE and its stability relative to the change in the rate of heating, the observed decrease in density was explained as being due to the radiation-induced crosslinking and/or branching inhibiting the process of crystallization and existing in the crystalline region as defects.
Resumo:
The nucleoside analogue cordycepin (3'-deoxyodenosine, 3'-dA), one of the components of cordyceps militaris, has been shown to inhibit the growth of various tumor cells. However, the probable mechanism is still obscure. In this study, the inhibition of cell growth and changes in protein expression induced by cordycepin were investigated in BEL-7402 cells. Using the MTT assay and flow cytometry, we found that cordycepin inhibits cell viability and induces apoptosis in BEL 7402 cells. Additionally. the proteins were separated using two-dimensional polyacrylamide gel electrophoresis, and eight proteins were found to be significantly, affected by cordycepin compared to untreated control; among them, two were downregulated and six were upregulated. Of the eight proteins, six were identified with peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) after in-gel trypsin digestion. These proteins are involved in various aspects of cellular metabolism. It is suggested that the effect of cordycepin on the growth of tumor cells is significantly related to the metabolism-associated protein expression induced by cordycepin. Copyright 2008 Prous Science, S.A.U. or its licensors. All rights reserved.
Resumo:
Poolton, Nigel; Towlson, B.M.; Hamilton, B.; Evans, D.A., (2006) 'Synchrotron-laser interactions in hexagonal boron nitride: an examination of charge trapping dynamics at the boron K-edge', New Journal of Physics 8 pp.76 RAE2008
Resumo:
In this thesis, a magneto-optical trap setup is used to laser cool and confine a cloud of 85Rb. The cloud typically contains 108 atoms in a 1 mm3 volume at a temperature in the region of the Doppler Limit (146 _K for 85Rb). To study the cold cloud, a subwavelength optical fibre - a nanofibre, or ONF - is positioned inside the cloud. The ONF can be used in two ways. Firstly, it is an efficient fluorescence collection tool for the cold atoms. Loading times, lifetimes and temperatures can be measured by coupling the atomic fluorescence to the evanescent region of the ONF. Secondly, the ONF is used as a probe beam delivery tool using the evanescent field properties of the device, allowing one to perform spectroscopy on few numbers of near-surface atoms. With improvements in optical density of the cloud, this system is an ideal candidate in which to generate electromagnetically induced transparency and slow light. A theoretical study of the van der Waals and Casimir-Polder interactions between an atom and a dielectric surface is also presented in this work in order to understand their effects in the spectroscopy of near-surface atoms.
Resumo:
The high-affinity 67-kd laminin receptor (67LR) is expressed by proliferating endothelial cells during retinal neovascularization. The role of 67LR has been further examined experimentally by administration of selective 67LR agonists and antagonists in a murine model of proliferative retinopathy. These synthetic 67LR ligands have been previously shown to stimulate or inhibit endothelial cell motility in vitro without any direct effect on proliferation. In the present study, a fluorescently labeled 67LR antagonist (EGF33–42) was injected intraperitoneally into mice and its distribution in the retina was assessed by confocal scanning laser microscopy. Within 2 hours this peptide was localized to the retinal vasculature, including preretinal neovascular complexes, and a significant amount had crossed the blood retinal barrier. For up to 24 hours postinjection, the peptide was still present in the retinal vascular walls and, to a lesser extent, in the neural retina. Non-labeled EGF33–42 significantly inhibited pre-retinal neovascularization in comparison to controls treated with phosphate-buffered saline or scrambled peptide (P <0.0001). The agonist peptide (Lamß1925–933) also significantly inhibited proliferative retinopathy; however, it caused a concomitant reduction in retinal ischemia in this model by promoting significant revascularization of the central retina (P <0.001). Thus, 67LR appears to be an important target receptor for the modulation of retinal neovascularization. Agonism of this receptor may be valuable in reducing the hypoxia-stimulated release of angiogenic growth factors which drives retinal angiogenesis.
Thickness-induced stabilization of ferroelectricity in SrRuO3/Ba0.5Sr0.5TiO3/Au thin film capacitors
Resumo:
Pulsed-laser deposition has been used to fabricate Au/Ba0.5Sr0.5TiO3/SrRuO3/MgO thin film capacitor structures. Crystallographic and microstructural investigations indicated that the Ba0.5Sr0.5TiO3 (BST) had grown epitaxially onto the SrRuO3 lower electrode, inducing in-plane compressive and out- of-plane tensile strain in the BST. The magnitude of strain developed increased systematically as film thickness decreased. At room temperature this composition of BST is paraelectric in bulk. However, polarization measurements suggested that strain had stabilized the ferroelectric state, and that the decrease in film thickness caused an increase in remanent polarization. An increase in the paraelectric-ferroelectric transition temperature upon a decrease in thickness was confirmed by dielectric measurements. Polarization loops were fitted to Landau-Ginzburg-Devonshire (LGD) polynomial expansion, from which a second order paraelectric-ferroelectric transition in the films was suggested at a thickness of similar to500 nm. Further, the LGD analysis showed that the observed changes in room temperature polarization were entirely consistent with strain coupling in the system. (C) 2002 American Institute of Physics.
Resumo:
The dielectric properties of Au/[93%Pb(Mg1/3Nb2/3)O-3-7%PbTiO3] (PMN-PT)/(La0.5Sr0.5)CoO3/MgO thin-film capacitor heterostructures, made using pulsed laser deposition, have been investigated, with particular emphasis on the changes in response associated with increasing the magnitude of the ac measuring field. It was found that increasing the ac field caused a change in the frequency spectrum of relaxators, increasing the speed of response of "slow" relaxators, with an associated decrease in the freezing temperature (T-f) of the relaxor system; in addition, other characteristic parameters relating to polar relaxation (activation energy E-a and attempt frequency 1/tau(0)), described by fitting of the dielectric response to a Vogel-Fulcher expression, were found to change continuously as ac field levels were increased.
Resumo:
We report on the acceleration of ion beams from ultrathin diamondlike carbon foils of thickness 50, 30, and 10 nm irradiated by ultrahigh contrast laser pulses at intensities of similar to 7 X 10(19) W/cm(2). An unprecedented maximum energy of 185 MeV (15 MeV/u) for fully ionized carbon atoms is observed at the optimum thickness of 30 nm. The enhanced acceleration is attributed to self-induced transparency, leading to strong volumetric heating of the classically overdense electron population in the bulk of the target. Our experimental results are supported by both particle-in-cell (PIC) simulations and an analytical model.
Resumo:
Laser-produced proton beams have been used to achieve ultrafast volumetric heating of carbon samples at solid density. The isochoric melting of carbon was probed by a scattering of x rays from a secondary laser-produced plasma. From the scattering signal, we have deduced the fraction of the material that was melted by the inhomogeneous heating. The results are compared to different theoretical approaches for the equation of state which suggests modifications from standard models.
Resumo:
Relaxation of the 1A1 half arrow right over half arrow left 5T2 spin equilibrium in acetonitrile of the complex of Fe(II) with the multidentate pyridyl macrocyclic ligand N,N',N''-tris(2-pyridylmethyl)-1,4,7-triazacyclodecane (tp[10]aneN3) after perturbation by a pulsed laser provides the first example of biphasic kinetics for spin crossover in solution with a fast (tau
Resumo:
The use of strong-field (i.e. intensities in excess of 10(13) Wcm(-2)) few-cycle ultrafast (durations of 10 femtoseconds or less) laser pulses to create, manipulate and image vibrational wavepackets is investigated. Quasi-classical modelling of the initial superposition through tunnel ionization, wavepacket modification by nonadiabatically altering the nuclear environment via the transition dipole and the Stark effect, and measuring the control outcome by fragmenting the molecule is detailed. The influence of the laser intensity on strong-field ultrafast wavepacket control is discussed in detail: by modifying the distribution of laser intensities imaged, we show that focal conditions can be created that give preference to this three-pulse technique above processes induced by the pulses alone. An experimental demonstration is presented, and the nuclear dynamics inferred by the quasi-classical model discussed. Finally, we present the results of a systematic investigation of a dual-control pulse scheme, indicating that single vibrational states should be observable with high fidelity, and the populated state defined by varying the arrival time of the two control pulses. The relevance of such strong-field coherent control methods to the manipulation of electron localization and attosecond science is discussed.