971 resultados para LASER POWER TRANSMISSION
Resumo:
Measuring Job Openings: Evidence from Swedish Plant Level Data. In modern macroeconomic models “job openings'' are a key component. Thus, when taking these models to the data we need an empirical counterpart to the theoretical concept of job openings. To achieve this, the literature relies on job vacancies measured either in survey or register data. Insofar as this concept captures the concept of job openings well we should see a tight relationship between vacancies and subsequent hires on the micro level. To investigate this, I analyze a new data set of Swedish hires and job vacancies on the plant level covering the period 2001-2012. I find that vacancies contain little power in predicting hires over and above (i) whether the number of vacancies is positive and (ii) plant size. Building on this, I propose an alternative measure of job openings in the economy. This measure (i) better predicts hiring at the plant level and (ii) provides a better fitting aggregate matching function vis-à-vis the traditional vacancy measure. Firm Level Evidence from Two Vacancy Measures. Using firm level survey and register data for both Sweden and Denmark we show systematic mis-measurement in both vacancy measures. While the register-based measure on the aggregate constitutes a quarter of the survey-based measure, the latter is not a super-set of the former. To obtain the full set of unique vacancies in these two databases, the number of survey vacancies should be multiplied by approximately 1.2. Importantly, this adjustment factor varies over time and across firm characteristics. Our findings have implications for both the search-matching literature and policy analysis based on vacancy measures: observed changes in vacancies can be an outcome of changes in mis-measurement, and are not necessarily changes in the actual number of vacancies. Swedish Unemployment Dynamics. We study the contribution of different labor market flows to business cycle variations in unemployment in the context of a dual labor market. To this end, we develop a decomposition method that allows for a distinction between permanent and temporary employment. We also allow for slow convergence to steady state which is characteristic of European labor markets. We apply the method to a new Swedish data set covering the period 1987-2012 and show that the relative contributions of inflows and outflows to/from unemployment are roughly 60/30. The remaining 10\% are due to flows not involving unemployment. Even though temporary contracts only cover 9-11\% of the working age population, variations in flows involving temporary contracts account for 44\% of the variation in unemployment. We also show that the importance of flows involving temporary contracts is likely to be understated if one does not account for non-steady state dynamics. The New Keynesian Transmission Mechanism: A Heterogeneous-Agent Perspective. We argue that a 2-agent version of the standard New Keynesian model---where a ``worker'' receives only labor income and a “capitalist'' only profit income---offers insights about how income inequality affects the monetary transmission mechanism. Under rigid prices, monetary policy affects the distribution of consumption, but it has no effect on output as workers choose not to change their hours worked in response to wage movements. In the corresponding representative-agent model, in contrast, hours do rise after a monetary policy loosening due to a wealth effect on labor supply: profits fall, thus reducing the representative worker's income. If wages are rigid too, however, the monetary transmission mechanism is active and resembles that in the corresponding representative-agent model. Here, workers are not on their labor supply curve and hence respond passively to demand, and profits are procyclical.
Resumo:
Since 1996 direct femtosecond inscription in transparent dielectrics has become the subject of intensive research. This enabling technology significantly expands the technological boundaries for direct fabrication of 3D structures in a wide variety of materials. It allows modification of non-photosensitive materials, which opens the door to numerous practical applications. In this work we explored the direct femtosecond inscription of waveguides and demonstrated at least one order of magnitude enhancement in the most critical parameter - the induced contrast of the refractive index in a standard borosilicate optical glass. A record high induced refractive contrast of 2.5×10-2 is demonstrated. The waveguides fabricated possess one of the lowest losses, approaching level of Fresnel reflection losses at the glassair interface. High refractive index contrast allows the fabrication of curvilinear waveguides with low bend losses. We also demonstrated the optimisation of the inscription regimes in BK7 glass over a broad range of experimental parameters and observed a counter-intuitive increase of the induced refractive index contrast with increasing translation speed of a sample. Examples of inscription in a number of transparent dielectrics hosts using high repetition rate fs laser system (both glasses and crystals) are also presented. Sub-wavelength scale periodic inscription inside any material often demands supercritical propagation regimes, when pulse peak power is more than the critical power for selffocusing, sometimes several times higher than the critical power. For a sub-critical regime, when the pulse peak power is less than the critical power for self-focusing, we derive analytic expressions for Gaussian beam focusing in the presence of Kerr non-linearity as well as for a number of other beam shapes commonly used in experiments, including astigmatic and ring-shaped ones. In the part devoted to the fabrication of periodic structures, we report on recent development of our point-by-point method, demonstrating the shortest periodic perturbation created in the bulk of a pure fused silica sample, by using third harmonics (? =267 nm) of fundamental laser frequency (? =800 nm) and 1 kHz femtosecond laser system. To overcome the fundamental limitations of the point-by-point method we suggested and experimentally demonstrated the micro-holographic inscription method, which is based on using the combination of a diffractive optical element and standard micro-objectives. Sub-500 nm periodic structures with a much higher aspect ratio were demonstrated. From the applications point of view, we demonstrate examples of photonics devices by direct femtosecond fabrication method, including various vectorial bend-sensors fabricated in standard optical fibres, as well as a highly birefringent long-period gratings by direct modulation method. To address the intrinsic limitations of femtosecond inscription at very shallow depths we suggested the hybrid mask-less lithography method. The method is based on precision ablation of a thin metal layer deposited on the surface of the sample to create a mask. After that an ion-exchange process in the melt of Ag-containing salts allows quick and low-cost fabrication of shallow waveguides and other components of integrated optics. This approach covers the gap in direct fs inscription of shallow waveguide. Perspectives and future developments of direct femtosecond micro-fabrication are also discussed.
Resumo:
In this work, a microchanneled chirped fiber Bragg grating (MCFBG) is proposed and fabricated through the femtosecond laser-assisted chemical etching. The microchannel (~550 µm) gives access to the external index liquid, thus inducing refractive index (RI) sensitivity to the structure. In the experiment, the transmission bands induced by the reduced effective index in the microchannel region were used to sense the surrounding RI and temperature changes. The experimental results show good agreement with the theoretical analysis. The proposed MCFBG offers enhanced RI sensitivity without degrading the robustness of the device showing good application potential as bio-chemical sensors.
Resumo:
We compare the Q parameter obtained from scalar, semi-analytical and full vector models for realistic transmission systems. One set of systems is operated in the linear regime, while another is using solitons at high peak power. We report in detail on the different results obtained for the same system using different models. Polarisation mode dispersion is also taken into account and a novel method to average Q parameters over several independent simulation runs is described. © 2006 Elsevier B.V. All rights reserved.
Resumo:
This thesis presents a numerical and experimental investigation on applications of ultralong Raman fibre lasers in optical communications, supercontinuum generation and soliton transmission. The research work is divided in four main sections. The first involves the numerical investigation of URFL intra-cavity power and the relative intensity noise transfer evolution along the transmission span. The performance of the URFL is compared with amplification systems of similar complexity. In the case of intracavity power evolution, URFL is compared with a first order Raman amplification system. For the RIN transfer investigation, URFL is compared with a bi-directional dual wavelength pumping system. The RIN transfer function is investigated for several cavity design parameters such as span length, pump distribution and FBG reflectivity. The following section deals with experimental results of URFL cavities. The enhancement of the available spectral bandwidth in the C-band and its spectral flatness are investigated for single and multi-FBGs cavity system. Further work regarding extended URFL cavity in combination with Rayleigh scattering as random distributed feedback produced a laser cavity with dual wavelength outputs independent to each other. The last two sections relate to URFL application in supercontinuum (SC) generation and soliton transmission. URFL becomes an enhancement structure for SC generation. This thesis shows successful experimental results of SC generation using conventional single mode optical fibre and pumped with a continuous wave source. The last section is dedicated to soliton transmission and the study of soliton propagation dynamics. The experimental results of exact soliton transmission over multiple soliton periods using conventional single mode fibre are shown in this thesis. The effect of the input signal, pump distribution, span length and FBGs reflectivity on the soliton propagation dynamics is investigated experimentally and numerically.
Resumo:
We investigate a 40 Gbit/s all-Raman amplified standard single mode fibre (SMF) transmission system with the mid-range amplifier spacing of 80-90 km. The impact of span configuration on double Rayleigh back scattering (DRBS) was studied. Four different span configurations were compared experimentally. A transmission distance of 1666 km in SMF has been achieved without forward error correcting (FEC) for the first time. The results demonstrate that the detrimental effects associated with high pump power Raman amplification in standard fibre can be minimised by dispersion map optimisation. © 2003 IEEE.
Resumo:
Environmentally stable high-power erbium fiber soliton lasers are constructed by Kerr or carrier-type mode locking. We obtain high-energy pulses by using relatively short fiber lengths and providing large amounts of negative dispersion with chirped fiber Bragg gratings. The pulse energies and widths generated with both types of soliton laser are found to scale with the square root of the cavity dispersion. Kerr mode locking requires pulses with an approximately three times higher nonlinear phase shift in the cavity than carrier mode locking, which leads to the generation of slightly shorter pulses with as much as seven times higher pulse energies at the mode-locking threshold.
Resumo:
Single- and multi-core passive and active germanate and tellurite glass fibers represent a new class of fiber host for in-fiber photonics devices and applications in mid-IR wavelength range, which are in increasing demand. Fiber Bragg grating (FBG) structures have been proven as one of the most functional in-fiber devices and have been mass-produced in silicate fibers by UV-inscription for almost countless laser and sensor applications. However, because of the strong UV absorption in germanate and tellurite fibers, FBG structures cannot be produced by UVinscription. In recent years femtosecond (fs) lasers have been developed for laser machining and microstructuring in a variety of glass fibers and planar substrates. A number of papers have been reported on fabrication of FBGs and long-period gratings in optical fibers and also on the photosensitivity mechanism using 800nm fs lasers. In this paper, we demonstrate for the first time the fabrication of FBG structures created in passive and active single- and three-core germanate and tellurite glass fibers by using 800nm fs-inscription and phase mask technique. With a fs peak power intensity in the order of 1011W/cm2, the FBG spectra with 2nd and 3rd order resonances at 1540nm and 1033nm in a single-core germanate glass fiber and 2nd order resonances between ~1694nm and ~1677nm with strengths up to 14dB in all three cores of three-core passive and active tellurite fibers were observed. Thermal and strain properties of the FBGs made in these mid-IR glass fibers were characterized, showing an average temperature responsivity of ~20pm/°C and a strain sensitivity of 1.219±0.003pm/µe.
Resumo:
Collision induced power jitter is examined in dispersion-managed wavelength division-multiplexed transmission systems. The power jitter causes ’ a serious problem for a singly-periodic dispersion managed line having almost zero average dispersion, which can be reduced by applying doubly-periodic dispersion management.
Resumo:
By transforming the optical fiber span into an ultralong cavity laser, we experimentally demonstrate quasilossless transmission over long (up to 75 km) distances and virtually zero signal power variation over shorter (up to 20 km) spans, opening the way for the practical implementation of integrable nonlinear systems in optical fiber. As a by-product of our technique, the longest ever laser (to the best of our knowledge) has been implemented, with a cavity length of 75 km. A simple theory of the lossless fiber span, in excellent agreement with the observed results, is presented.
Resumo:
This thesis investigates the feasibility of soliton transmission at 1150nm over standard fibre. This is done using a dispersion compensating fibre module in each amplifier span to compensate for the high dispersion. The basic principles of soliton propagation in optical fibre are discussed within this thesis, followed by an introduction to advantages of dispersion management. In the experimental chapter single channel transmission results are presented in 10Gbit/s and 40Gbit/s. At 10Gbit/s the effects of dispersion management on the power dispersion relationship for solitons are investigated. The detrimental effects of soliton-soliton interactions, which are increased due to the greater overlap breathing solitons are discussed. A technique for reducing the soliton-soliton interactions through amplifier positioning is presented as a solution to this problem. The experiments demonstrate the feasibility of using standard fibre for transmission over trans-oceanic distances at 10Gbit/s. The 40Gbit/s experiment demonstrates transmission over sufficient distance for an terrestrial system. Also contained within this thesis are experimental results showing transmission of solitons over dispersion shifted fibre using a novel technique that makes use of the non-linear polarisation rotation of the soliton in the fibre. This is used to generate the effect of saturable absorption, allowing transmission distances of 200,000km to be achieved.
Resumo:
This thesis presents a theoretical investigation on applications of Raman effect in optical fibre communication as well as the design and optimisation of various Raman based devices and transmission schemes. The techniques used are mainly based on numerical modelling. The results presented in this thesis are divided into three main parts. First, novel designs of Raman fibre lasers (RFLs) based on Phosphosilicate core fibre are analysed and optimised for efficiency by using a discrete power balance model. The designs include a two stage RFL based on Phosphosilicate core fibre for telecommunication applications, a composite RFL for the 1.6 μm spectral window, and a multiple output wavelength RFL aimed to be used as a compact pump source for fiat gain Raman amplifiers. The use of Phosphosilicate core fibre is proven to effectively reduce the design complexity and hence leads to a better efficiency, stability and potentially lower cost. Second, the generalised Raman amplified gain model approach based on the power balance analysis and direct numerical simulation is developed. The approach can be used to effectively simulate optical transmission systems with distributed Raman amplification. Last, the potential employment of a hybrid amplification scheme, which is a combination between a distributed Raman amplifier and Erbium doped amplifier, is investigated by using the generalised Raman amplified gain model. The analysis focuses on the use of the scheme to upgrade a standard fibre network to 40 Gb/s system.
Resumo:
This thesis presents a detailed, experiment-based study of generation of ultrashort optical pulses from diode lasers. Simple and cost-effective techniques were used to generate high power, high quality optical short pulses at various wavelength windows. The major achievements presented in the thesis is summarised as follows. High power pulses generation is one of the major topics discussed in the thesis. Although gain switching is the simplest way for ultrashort pulse generation, it proves to be quite effective to deliver high energy pulses on condition that the pumping pulses with extremely fast rising time and high enough amplitude are applied on specially designed pulse generators. In the experiment on a grating-coupled surface emitting laser (GCSEL), peak power as high as 1W was achieved even when its spectral bandwidth was controlled within 0.2nm. Another experiment shows violet picosecond pulses with peak power as high as 7W was achieved when the intensive electrical pulses were applied on optimised DC bias to pump on InGaN violet diode laser. The physical mechanism of this phenomenon, as we considered, may attributed to the self-organised quantum dots structure in the laser. Control of pulse quality, including spectral quality and temporal profile, is an important issue for high power pulse generation. The ways to control pulse quality described in the thesis are also based on simple and effective techniques. For instance, GCSEL used in our experiment has a specially designed air-grating structure for out-coupling of optical signals; hence, a tiny flat aluminium mirror was placed closed to the grating section and resulted in a wavelength tuning range over 100nm and the best side band suppression ratio of 40dB. Self-seeding, as an effective technique for spectral control of pulsed lasers, was demonstrated for the first time in a violet diode laser. In addition, control of temporal profile of the pulse is demonstrated in an overdriven DFB laser. Wavelength tuneable fibre Bragg gratings were used to tailor the huge energy tail of the high power pulse. The whole system was compact and robust. The ultimate purpose of our study is to design a new family of compact ultrafast diode lasers. Some practical ideas of laser design based on gain-switched and Q-switched devices are also provided in the end.
Resumo:
This thesis contains the results of experimental and numerical simulations of optical transmission systems using dispersion managed transmission techniques. Theoretical background is given on the propagation of pulses in optical fibres before extending the arguments to optical solitons, their applications and uses in communications. Dispersion management for transmission systems is introduced and then a brief explanation of quasi-linear pulse propagation is given. Techniques for performing laboratory transmission experiments are divulged and focus on the construction and operation of a recirculating loop. Laser sources and modulators for 40Gbit/s transmission rates are discussed and techniques for acquiring information from the resultant eye are explained.The operation of optically time division demultiplexing with a nonlinear elecro-absorption modulator is considered and then is replaced by the used of a linear electro-optic modulator and Dispersion unbalanced loop mirror (DILM). The use of nonlinearity as a positive effect for the use of processing and regenerating optical data is approached with an insight into the operation interferometers. Successful experimental results are given for the characterisation of the DILM and 40Gbit/ to l0Gbit/s demultiplexing is demonstrated.Modelling of a terrestrial style system is performed and the methods for computer simulation are discussed. The simulations model single channel 40Gbit/s transmission, 16 x 40Gbit/s WDM transmission and WDM transmission with varying channel separation. Three modulation formats are examined over the single mode fibre span. It is found that the dispersion managed soliton is not suitable for terrestrial style systems and that return-to-zero was the optimum format for the considered system.
Resumo:
This thesis experimentally examines the use of different techniques for optical fibre transmission over ultra long haul distances. Its format firstly examines the use of dispersion management as a means of achieving long haul communications. Secondly, examining the use concatenated NOLMs for DM autosoliton ultra long haul propagation, by comparing their performance with a generic system without NOLMs. Thirdly, timing jitter in concatenated NOLM system is examined and compared to the generic system and lastly issues of OTDM amplitude non-uniformity from channel to channel in a saturable absorber, specifically a NOLM, are raised. Transmission at a rate of 40Gbit/s is studied in an all-Raman amplified standard fibre link with amplifier spacing of the order of 80km. We demonstrate in this thesis that the detrimental effects associated with high power Raman amplification can be minimized by dispersion map optimization. As a result, a transmission distance of 1600 km (2000km including dispersion compensating fibre) has been achieved in standard single mode fibre. The use of concatenated NOLMs to provide a stable propagation regime has been proposed theoretically. In this thesis, the observation experimentally of autosoliton propagation is shown for the first time in a dispersion managed optical transmission system. The system is based on a strong dispersion map with large amplifier spacing. Operation at transmission rates of 10, 40 and 80Gbit/s is demonstrated. With an insertion of a stabilizing element to the NOLM, the transmission of a 10 and 20Gbit/s data stream was extended and demonstrated experimentally. Error-free propagation over 100 and 20 thousand kilometres has been achieved at 10 and 20Gbit/s respectively, with terrestrial amplifier spacing. The monitor of timing jitter is of importance to all optical systems. Evolution of timing jitter in a DM autosoliton system has been studied in this thesis and analyzed at bit ranges from 10Gbit/s to 80Gbit/s. Non-linear guiding by in-line regenerators considerably changes the dynamics of jitter accumulation. As transmission systems require higher data rates, the use of OTDM will become more prolific. The dynamics of switching and transmission of an optical signal comprising individual OTDM channels of unequal amplitudes in a dispersion-managed link with in-line non-linear fibre loop mirrors is investigated.