970 resultados para LANTHANUM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The porewater and sediment composition of two boxcores and of a small gravity core, taken on a manganese-nodule-covered hill and in the Madeira Abyssal Plain proper respectively, are compared. The pore-water study of the two boxcores indicates that oxic conditions prevail in both cores. In addition, it indicates that no detectable fluxes of Mn or Fe occur from the porewater to the ocean bottom water. Variations in the geochemical composition of the sediments can be explained by fluctuations in the amount of carbonate, which acts as a diluting agent. A clear carbonate minimum is observed at 20-22 cm depth in the two cores. This minimum is likely to be associated with the last glacial period (10-20 kyr B.P.). This association is supported by the sediment accumulation rate of 15 mm/kyr as found by extrapolation from the rate for pelagic sediments in the Madeira Abyssal Plain. The bulk composition of the manganese nodules recovered from the submarine hill is chemically almost identical to the average composition of Atlantic nodules. The trace metal and Rare Earth Elements composition indicate a hydrogenous origin for the manganese nodules of this study. On the basis of the chemical composition, and that of nodules relative to that of the adjacent sediments, an average nodule accretian rate of 2.8-3.3 mm/myr has been calculated. Although the analyses of the entire ferromanganese nodules that have been studied seem to indicate a homogenous composition, internal structures of the nodules reveal great inhomogeneity, both visually and chemically. These fluctuations may be related to variations in the fluxes of Mn and Fe, which in turn could be climate-related.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oceanic zircon trace element and Hf-isotope geochemistry offers a means to assess the magmatic evolution of a dying spreading ridge and provides an independent evaluation of the reliability of oceanic zircon as an indicator of mantle melting conditions. The Macquarie Island ophiolite in the Southern Ocean provides a unique testing ground for this approach due to its formation within a mid-ocean ridge that gradually changed into a transform plate boundary. Detrital zircon recovered from the island records this change through a progressive enrichment in incompatible trace elements. Oligocene age (33-27 Ma) paleo-detrital zircon in ophiolitic sandstones and breccias interbedded with pillow basalt have trace element compositions akin to a MORB crustal source, whereas Late Miocene age (8.5 Ma) modern-detrital zircon collected from gabbroic colluvium on the island have highly enriched compositions unlike typical oceanic zircon. This compositional disparity between age populations is not complimented by analytically equivalent eHf data that primarily ranges from 14 to 13 for sandstone and modern-detrital populations. A wider compositional range for the sandstone population reflects a multiple pluton source provenance and is augmented by a single cobble clast with eHf equivalent to the maximum observed composition in the sandstone (~17). Similar sandstone and colluvium Hf-isotope signatures indicate inheritance from a similar mantle reservoir that was enriched from the depleted MORB mantle average. The continuity in Hf-isotope signature relative to trace element enrichment in Macquarie Island zircon populations, suggests the latter formed by reduced partial melting linked to spreading-segment shortening and transform lengthening along the dying spreading ridge.