994 resultados para Kasekamp, Andres
Observations of Comet 9P/Tempel 1 around the Deep Impact event by the OSIRIS cameras onboard Rosetta
Resumo:
INTRODUCTION: The aim of this retrospective study was to evaluate the clinical outcome of patients with spinal dural arteriovenous fistulas (SDAVFs) that were treated with surgery, catheter embolization, or surgery after incomplete embolization. METHODS: The study included 21 consecutive patients with SDAVFs of the thoracic, lumbar, or sacral spine who were treated in our institution from 1994 to 2007. Thirteen patients were treated with catheter embolization alone. Four patients underwent hemilaminectomy and intradural interruption of the fistula. Four patients were treated by endovascular techniques followed by surgery. The clinical outcome was assessed using the modified Aminoff-Logue scale (ALS) for myelopathy and the modified Rankin scale (MRS) for general quality of life. Patient age ranged from 44 to 77 years (mean 64.7 years). RESULTS: Surgical as well as endovascular treatment resulted in a significant improvement in ALS (-62.5% and -31.4%, respectively, p < 0.05) and a tendency toward improved MRS (-50% and -32%, respectively) scores. Patients that underwent surgery after endovascular treatment due to incomplete occlusion of the fistula showed only a tendency for improvement in the ALS score (-16.7%), whereas the MRS score was not affected. CONCLUSION: We conclude that both endovascular and surgical treatment of SDAVFs resulted in a good and lasting clinical outcome in the majority of cases. In specific situations, when a secondary neurosurgical approach was required after endovascular treatment to achieve complete occlusion of the SDAVF, the clinical outcome was rather poor. The best first line treatment modality for each individual patient should be determined by an interdisciplinary team.
Resumo:
A hallmark of acute myeloid leukaemia (AML) is a block in differentiation caused by deregulated gene expression. The tumour suppressor Hypermethylated In Cancer 1 (HIC1) is a transcriptional repressor, which is epigenetically silenced in solid cancers. HIC1 mRNA expression was found to be low in 128 patient samples of AML and CD34+ progenitor cells when compared with terminally differentiated granulocytes. HIC1 mRNA was induced in a patient with t(15;17)-positive acute promyelocytic leukaemia receiving all-trans retinoic acid (ATRA) therapy. We therefore investigated whether HIC1 plays a role in granulocytic differentiation and whether loss of function of this gene might contribute to the differentiation block in AML. We evaluated HIC1 mRNA levels in HL-60 and U-937 cells upon ATRA-induced differentiation and in CD34+ progenitor cells after granulocyte colony-stimulating factor-induced differentiation. In both models of granulocytic differentiation, we observed significant HIC1 induction. When HIC1 mRNA was suppressed in HL-60 cells using stably expressed short hairpin RNA targeting HIC1, granulocytic differentiation was altered as assessed by CD11b expression. Bisulphite sequencing of GC-rich regions (CpG islands) in the HIC1 promoter provided evidence that the observed suppression in HL-60 cells was not because of promoter hypermethylation. Our findings indicate a role for the tumour suppressor gene HIC1 in granulocytic differentiation. Low expression of HIC1 may very well contribute to pathogenic events in leukaemogenesis.
Resumo:
OBJECTIVES: To determine the accuracy of automated vessel-segmentation software for vessel-diameter measurements based on three-dimensional contrast-enhanced magnetic resonance angiography (3D-MRA). METHOD: In 10 patients with high-grade carotid stenosis, automated measurements of both carotid arteries were obtained with 3D-MRA by two independent investigators and compared with manual measurements obtained by digital subtraction angiography (DSA) and 2D maximum-intensity projection (2D-MIP) based on MRA and duplex ultrasonography (US). In 42 patients undergoing carotid endarterectomy (CEA), intraoperative measurements (IOP) were compared with postoperative 3D-MRA and US. RESULTS: Mean interoperator variability was 8% for measurements by DSA and 11% by 2D-MIP, but there was no interoperator variability with the automated 3D-MRA analysis. Good correlations were found between DSA (standard of reference), manual 2D-MIP (rP=0.6) and automated 3D-MRA (rP=0.8). Excellent correlations were found between IOP, 3D-MRA (rP=0.93) and US (rP=0.83). CONCLUSION: Automated 3D-MRA-based vessel segmentation and quantification result in accurate measurements of extracerebral-vessel dimensions.
Resumo:
This article provides an overview on the actual state of the interventional neuroradiological management of carotid cavernous fistulas depending on their anatomy and pathophysiology. The results are based on our experience gained during the treatment of patients with complex CCF during the last 15 years. Indications, procedures, and results of transarterial, transvenous and combined arteriovenous approaches for balloon occlusion, embolization, coiling and stenting of these lesions are discussed. Progress in this field is constant so that new technical advances are expected to improve the safety and to expand the indications for these procedures in the future.
Resumo:
Delayed ischemic neurological deficit (DIND) following cerebral vasospasm remains a cause for high morbidity and mortality in patients with subarachnoid hemorrhage (SAH). There is experimental and clinical evidence of positive effects of nitric oxide (NO) donors on cerebral vasospasm. We therefore analysed the effect of transdermal nitroglycerin in patients with SAH measuring transcranial Doppler velocities (TCD), cerebral blood flow (CBF) and DIND. Nitroglycerin was used in a target dose of 14 microg/kg/h. TCD assessment was performed daily. CBF measurements were done using the perfusion CT-technique. Blood pressure, volume intake and vasopressor administration, were registered. Nine patients were randomly assigned either to the nitroglycerin group (N-group) and eight patients in the control group (C-group). Mean TCD values in the extracranial portion of the internal carotid artery (ICA) were lower in the N-group (p<0.005). Mean TCD in the middle cerebral arteries (MCA) showed no difference. The Lindegaard ratio was higher in the N-group (p<0.04). CBF in the N-group was higher than in the C-group (p<0.03). Even though nitroglycerin reduces blood pressure and lowers ICA TCD-values and increases the Lindegaard ratio, a higher CBF was measured in the N-group. Thus, nitroglycerin influences the cerebral vascular tone and increases CBF. SAH therapy with nitroglycerin is possible without increasing the risk of DIND. The exact timing of onset, duration and reduction of nitroglycerin administration in respect to the appearance of vasospasm may have a strong impact on the success of such a therapy.
Resumo:
The purpose of this study was to analyze the suitability of the cerebral vasculature of the pig regarding a revascularization procedure. In two 60 kg pigs the femoral artery was exposed and canulated for selective angiography and interventional procedures. After the angiography, the pigs were brought to the animal OR for craniotomy and analysis of the intracranial cerebral arteries and the surgical exposure of the carotid arteries under the microscope. Angiography demonstrated the presence of a true internal-, external carotid artery and vertebral arteries. Both the vertebral and internal carotid arteries are feeding a rete mirabilis both at the cranial base and the cranio-cervical junction. At these sites further advancement of the angiography catheter was not possible. Out of these rete mirabilis, an intracranial carotid artery and an intracranial vertebral artery were formed, respectively. The intracranial cerebral vessels were of the dimension of 1 mm and less. The extracranial portion of the internal carotid artery was 2.5 mm of diameter. From these findings, we conclude that a direct cerebral revascularization procedure of the intracranial vessels is not possible in the swine. However, a global revascularization procedure on the extracranial portion of the internal carotid artery is thus feasible, both using a low- and high-flow anastamosis technique.
Resumo:
Open skull fractures have been traditionally managed in 2 stages: urgent craniotomy and elevation of the fracture with removal of contaminated bone, debridement, and delayed cranioplasty. Primary, single-stage repair of these injures has been said to entail risks such as infections. Recent experience, however, disproved these concerns.We used a primary single-stage reconstruction for patients presenting with open depressed skull fractures. All patients received antibiotic prophylaxis. The patients underwent elevation of the compound fracture and craniotomy if necessary. Debridement was performed, followed by skull reconstruction using a 0.6-mm titanium mesh.We present 5 consecutive male patients (age, 32.2 +/- 15.6 years) who underwent primary reconstruction of open depressed skull fractures. Clinical and radiologic follow-up was performed 2 months after surgery. The duration of the surgery was 2 +/- 1.6 hours. The size of the implanted mesh was 13 +/- 13.1 cm. No infection was detected in our series, with a follow-up period of 22 +/- 6.5 months (range, 16-29 months). The cosmetic result was defined in 4 patients as "excellent" and in 1 patient as "good."Primary reconstruction of open skull fractures with titanium mesh is feasible, safe, and cosmetically preferable than the conventional staged approach. The introduction into clinical practice can be warranted.
Resumo:
There is increasing interest in the search for therapeutic options for diseases and injuries of the central nervous system (CNS), for which currently no effective treatment strategies are available. Replacement of damaged cells and restoration of function can be accomplished by transplantation of cells derived from different sources, such as human foetal tissue, genetically modified cell lines, embryonic or somatic stem cells. Preclinical and clinical trials have shown promising results in neurodegenerative disorders, like Parkinson's and Huntington's disease, but also ischaemic stroke, intracerebral haemorrhage, demyelinating disorders, epilepsy and traumatic lesions of the brain and spinal cord. Other studies have focused on finding new ways to activate and direct endogenous repair mechanisms in the CNS, eg, by exposure to specific neuronal growth factors or by inactivating inhibitory molecules. Neuroprotective drugs may offer an additional tool for improving neuronal survival in acute or chronic CNS diseases. Importantly however, a number of scientific issues need to be addressed in order to permit the introduction of these experimental techniques in the wider clinical setting.