981 resultados para Isothermal Remanent Magnetization
Resumo:
Molecular chaperones are central to cellular protein homeostasis. In mammals, protein misfolding diseases and aging cause inflammation and progressive tissue loss, in correlation with the accumulation of toxic protein aggregates and the defective expression of chaperone genes. Bacteria and non-diseased, non-aged eukaryotic cells effectively respond to heat shock by inducing the accumulation of heat-shock proteins (HSPs), many of which molecular chaperones involved in protein homeostasis, in reducing stress damages and promoting cellular recovery and thermotolerance. We performed a meta-analysis of published microarray data and compared expression profiles of HSP genes from mammalian and plant cells in response to heat or isothermal treatments with drugs. The differences and overlaps between HSP and chaperone genes were analyzed, and expression patterns were clustered and organized in a network. HSPs and chaperones only partly overlapped. Heat-shock induced a subset of chaperones primarily targeted to the cytoplasm and organelles but not to the endoplasmic reticulum, which organized into a network with a central core of Hsp90s, Hsp70s, and sHSPs. Heat was best mimicked by isothermal treatments with Hsp90 inhibitors, whereas less toxic drugs, some of which non-steroidal anti-inflammatory drugs, weakly expressed different subsets of Hsp chaperones. This type of analysis may uncover new HSP-inducing drugs to improve protein homeostasis in misfolding and aging diseases.
Increased brain perfusion contrast with T2 -prepared intravoxel incoherent motion (T2prep IVIM) MRI.
Resumo:
The feasibility to measure brain perfusion using intravoxel incoherent motion (IVIM) MRI has been reported recently with currently clinically available technology. The method is intrinsically local and quantitative, but is contaminated by partial volume effects with cerebrospinal fluid (CSF). Signal from CSF can be suppressed by a 180° inversion recovery (180°-IR) magnetization preparation, but this also leads to strong suppression of blood and brain tissue signal. Here, we take advantage of the different T2 relaxations of blood and brain relative to CSF, and implement a T2 -prepared IVIM (T2prep IVIM) inversion recovery acquisition, which permits a recovery of between 43% and 57% of arterial and venous blood magnetization at excitation time compared with the theoretical recovery of between 27% and 30% with a standard 180°-IR. We acquired standard IVIM (IVIM), T2prep IVIM and dynamic susceptibility contrast (DSC) images at 3 T using a 32-multichannel receiver head coil in eight patients with known large high-grade brain tumors. We compared the contrast and contrast-to-noise ratio obtained in the corresponding cerebral blood volume images quantitatively, as well as subjectively by two neuroradiologists. Our findings suggest that quantitative cerebral blood volume contrast and contrast-to-noise ratio, as well as subjective lesion detection, contrast quality and diagnostic confidence, are increased with T2prep IVIM relative to IVIM and DSC.
Resumo:
PURPOSE: To improve the tag persistence throughout the whole cardiac cycle by providing a constant tag-contrast throughout all the cardiac phases when using balanced steady-state free precession (bSSFP) imaging. MATERIALS AND METHODS: The flip angles of the imaging radiofrequency pulses were optimized to compensate for the tagging contrast-to-noise ratio (Tag-CNR) fading at later cardiac phases in bSSFP imaging. Complementary spatial modulation of magnetization (CSPAMM) tagging was implemented to improve the Tag-CNR. Numerical simulations were performed to examine the behavior of the Tag-CNR with the proposed method, and to compare the resulting Tag-CNR with that obtained from the more commonly used spoiled gradient echo (SPGR) imaging. A gel phantom, as well as five healthy human volunteers, were scanned on a 1.5T scanner using bSSFP imaging with and without the proposed technique. The phantom was also scanned with SPGR imaging. RESULTS: With the proposed technique, the Tag-CNR remained almost constant during the whole cardiac cycle. Using bSSFP imaging, the Tag-CNR was about double that of SPGR. CONCLUSION: The tag persistence was significantly improved when the proposed method was applied, with better Tag-CNR during the diastolic cardiac phase. The improved Tag-CNR will support automated tagging analysis and quantification methods.
Resumo:
PURPOSE: To compare 3 different flow targeted magnetization preparation strategies for coronary MR angiography (cMRA), which allow selective visualization of the vessel lumen. MATERIAL AND METHODS: The right coronary artery of 10 healthy subjects was investigated on a 1.5 Tesla MR system (Gyroscan ACS-NT, Philips Healthcare, Best, NL). A navigator-gated and ECG-triggered 3D radial steady-state free-precession (SSFP) cMRA sequence with 3 different magnetization preparation schemes was performed referred to as projection SSFP (selective labeling of the aorta, subtraction of 2 data sets), LoReIn SSFP (double-inversion preparation, selective labeling of the aorta, 1 data set), and inflow SSFP (inversion preparation, selective labeling of the coronary artery, 1 data set). Signal-to-noise ratio (SNR) of the coronary artery and aorta, contrast-to-noise ratio (CNR) between the coronary artery and epicardial fat, vessel length and vessel sharpness were analyzed. RESULTS: All cMRA sequences were successfully obtained in all subjects. Both projection SSFP and LoReIn SSFP allowed for selective visualization of the coronary arteries with excellent background suppression. Scan time was doubled in projection SSFP because of the need for subtraction of 2 data sets. In inflow SSFP, background suppression was limited to the tissue included in the inversion volume. Projection SSFP (SNR(coro): 25.6 +/- 12.1; SNR(ao): 26.1 +/- 16.8; CNR(coro-fat): 22.0 +/- 11.7) and inflow SSFP (SNR(coro): 27.9 +/- 5.4; SNR(ao): 37.4 +/- 9.2; CNR(coro-fat): 24.9 +/- 4.8) yielded significantly increased SNR and CNR compared with LoReIn SSFP (SNR(coro): 12.3 +/- 5.4; SNR(ao): 11.8 +/- 5.8; CNR(coro-fat): 9.8 +/- 5.5; P < 0.05 for both). Longest visible vessel length was found with projection SSFP (79.5 mm +/- 18.9; P < 0.05 vs. LoReIn) whereas vessel sharpness was best in inflow SSFP (68.2% +/- 4.5%; P < 0.05 vs. LoReIn). Consistently good image quality was achieved using inflow SSFP likely because of the simple planning procedure and short scanning time. CONCLUSION: Three flow targeted cMRA approaches are presented, which provide selective visualization of the coronary vessel lumen and in addition blood flow information without the need of contrast agent administration. Inflow SSFP yielded highest SNR, CNR and vessel sharpness and may prove useful as a fast and efficient approach for assessing proximal and mid vessel coronary blood flow, whereas requiring less planning skills than projection SSFP or LoReIn SSFP.
Resumo:
BACKGROUND: The aim of our study was the investigation of a novel navigator-gated three-dimensional (3D) steady-state free-precession (SSFP) sequence for free-breathing renal magnetic resonance angiography (MRA) without contrast medium, and to examine the advantage of an additional inversion prepulse for improved contrast. METHODS: Eight healthy volunteers (mean age 29 years) and eight patients (mean age 53 years) were investigated on a 1.5 Tesla MR system (ACS-NT, Philips, Best, The Netherlands). Renal MRA was performed using three navigator-gated free-breathing cardiac-triggered 3D SSFP sequences [repetition time (TR) = 4.4 ms, echo time (TE) = 2.2 ms, flip angle 85 degrees, spatial resolution 1.25 x 1.25 x 4.0 mm(3), scanning time approximately 1 minute 30 seconds]. The same sequence was performed without magnetization preparation, with a non-slab selective and a slab-selective inversion prepulse. Signal-to-noise ratio (SNR), contrast-to-noise (CNR) vessel length, and subjective image quality were compared. RESULTS: Three-dimensional SSFP imaging combined with a slab-selective inversion prepulse enabled selective and high contrast visualization of the renal arteries, including the more distal branches. Standard SSFP imaging without magnetization preparation demonstrated overlay by veins and renal parenchyma. A non-slab-selective prepulse abolished vessel visualization. CNR in SSFP with slab-selective inversion was 43.6 versus 10.6 (SSFP without magnetization preparation) and 0.4 (SSFP with non-slab-selective inversion), P < 0.008. CONCLUSION: Navigator-gated free-breathing cardiac-triggered 3D SSFP imaging combined with a slab-selective inversion prepulse is a novel, fast renal MRA technique without the need for contrast media.
Resumo:
The influence of incorporating 5-tert-butyl isophthalic units (tBI) in the polymer chain of poly(ethylene terephthalate) (PET) on the crystallization behavior, crystal structure, and tensile and gas transport properties of this polyester was evaluated. Random poly(ethyleneterephthalate-co-5-tert-butyl isophthalate) copolyesters (PETtBI) containing between 5 and 40 mol% of tBI units were examined. Isothermal crystallization studies were performed on amorphous glassy films at 120 8C and on molten samples at 200 8C by means of differential scanning calorimetry. Furthermore, the non-isothermal crystallization behavior of the copolyesters was investigated. It was observed that both crystallinity and crystallization rate of the PETtBI copolyesters tend to decrease largely with the comonomeric content, except for the copolymer containing 5 mol% of tBI units, which crystallized faster than PET. Fiber X-ray diffraction patterns of the semicrystalline PETtBI copolyesters proved that they adopt the same triclinic crystal structure as PET with the comonomeric units being excluded from the crystalline phase. Although PETtBI copolyesters became brittle for higher contents in tBI, the tensile modulus and strength of PET were barely affected by copolymerization. The ncorporation of tBI units slightly increased the permeability of PET, but copolymers containing up to 20 mol% of the comonomeric units were still able to present barrier properties.
Resumo:
Relaxation rates provide important information about tissue microstructure. Multi-parameter mapping (MPM) estimates multiple relaxation parameters from multi-echo FLASH acquisitions with different basic contrasts, i.e., proton density (PD), T1 or magnetization transfer (MT) weighting. Motion can particularly affect maps of the apparent transverse relaxation rate R2(*), which are derived from the signal of PD-weighted images acquired at different echo times. To address the motion artifacts, we introduce ESTATICS, which robustly estimates R2(*) from images even when acquired with different basic contrasts. ESTATICS extends the fitted signal model to account for inherent contrast differences in the PDw, T1w and MTw images. The fit was implemented as a conventional ordinary least squares optimization and as a robust fit with a small or large confidence interval. These three different implementations of ESTATICS were tested on data affected by severe motion artifacts and data with no prominent motion artifacts as determined by visual assessment or fast optical motion tracking. ESTATICS improved the quality of the R2(*) maps and reduced the coefficient of variation for both types of data-with average reductions of 30% when severe motion artifacts were present. ESTATICS can be applied to any protocol comprised of multiple 2D/3D multi-echo FLASH acquisitions as used in the general research and clinical setting.
Resumo:
PURPOSE: In the present study, the impact of the two different fat suppression techniques was investigated for free breathing 3D spiral coronary magnetic resonance angiography (MRA). As the coronary arteries are embedded in epicardial fat and are adjacent to myocardial tissue, magnetization preparation such as T(2)-preparation and fat suppression is essential for coronary discrimination. MATERIALS AND METHODS: Fat-signal suppression in three-dimensional (3D) thin- slab coronary MRA based on a spiral k-space data acquisition can either be achieved by signal pre-saturation using a spectrally selective inversion recovery pre-pulse or by spectral-spatial excitation. In the present study, the performance of the two different approaches was studied in healthy subjects. RESULTS: No significant objective or subjective difference was found between the two fat suppression approaches. CONCLUSION: Spectral pre-saturation seems preferred for coronary MRA applications due to the ease of implementation and the shorter cardiac acquisition window.
Resumo:
PURPOSE: The longitudinal relaxation rate (R1 ) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water content. Here, we use whole brain multiparametric in vivo data and a general linear relaxometry model to describe the dependence of R1 on these components. We explore a) the validity of having a single fixed set of model coefficients for the whole brain and b) the stability of the model coefficients in a large cohort. METHODS: Maps of magnetization transfer (MT) and effective transverse relaxation rate (R2 *) were used as surrogates for macromolecular and iron content, respectively. Spatial variations in these parameters reflected variations in underlying tissue microstructure. A linear model was applied to the whole brain, including gray/white matter and deep brain structures, to determine the global model coefficients. Synthetic R1 values were then calculated using these coefficients and compared with the measured R1 maps. RESULTS: The model's validity was demonstrated by correspondence between the synthetic and measured R1 values and by high stability of the model coefficients across a large cohort. CONCLUSION: A single set of global coefficients can be used to relate R1 , MT, and R2 * across the whole brain. Our population study demonstrates the robustness and stability of the model. Magn Reson Med, 2014. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. Magn Reson Med 73:1309-1314, 2015. © 2014 Wiley Periodicals, Inc.
Resumo:
Iowa Highway Commission Project HR-33, "Characteristics of Chemically Treated Roadway Surfaces", was investigated at the Iowa Engineering Experiment Station under Project 375-S. The purpose of the project as originally proposed was to study the physical and chemical characteristics of chemically treated roadway surfaces. All chemical treatments were to be included, but only sodium chloride and calcium chloride treated roadways were investigated. The uses of other types of chemical treatment were not discovered until recently, notably spent sulfite liquor and a commercial additive. Costs of stabilized secondary roads in Hamilton County averaged $4300.00 per mile even though remanent soil-aggregate material was used. The cost of similar roads in Franklin County was $4400.00 per mile. The Franklin County road surfaces were constructed entirely from materials that were hauled to the road site. Costs in Butler County were a little over $3000.00 per mile some eight years ago. Chemical investigations indicate that calcium chloride and sodium chloride are lost through leaching. Approximately 95 percent of the sodium chloride appears to have been lost, and nearly 65 percent of the calcium chloride has disappeared. The latter value may be much in error since surface dressings of calcium chloride are commonly used and have not been taken into account. Clay contents of the soil-aggregate-chemical stabilized roads range from about 6 to ll percent, averaging 8 or 9 percent. The thicknesses of stabilized mats are usually 2 to 4 inches, with in-place densities ranging from 130 to 145 pcf. Generally the densities found in sodium chloride stabilized roads were slightly higher than those found in the calcium chloride stabilized roads.
Resumo:
INTRODUCTION: In patients with multiple sclerosis (MS), conventional magnetic resonance imaging (MRI) provides only limited insights into the nature of brain damage with modest clinic-radiological correlation. In this study, we applied recent advances in MRI techniques to study brain microstructural alterations in early relapsing-remitting MS (RRMS) patients with minor deficits. Further, we investigated the potential use of advanced MRI to predict functional performances in these patients. METHODS: Brain relaxometry (T1, T2, T2*) and magnetization transfer MRI were performed at 3T in 36 RRMS patients and 18 healthy controls (HC). Multicontrast analysis was used to assess for microstructural alterations in normal-appearing (NA) tissue and lesions. A generalized linear model was computed to predict clinical performance in patients using multicontrast MRI data, conventional MRI measures as well as demographic and behavioral data as covariates. RESULTS: Quantitative T2 and T2* relaxometry were significantly increased in temporal normal-appearing white matter (NAWM) of patients compared to HC, indicating subtle microedema (P = 0.03 and 0.004). Furthermore, significant T1 and magnetization transfer ratio (MTR) variations in lesions (mean T1 z-score: 4.42 and mean MTR z-score: -4.09) suggested substantial tissue loss. Combinations of multicontrast and conventional MRI data significantly predicted cognitive fatigue (P = 0.01, Adj-R (2) = 0.4), attention (P = 0.0005, Adj-R (2) = 0.6), and disability (P = 0.03, Adj-R (2) = 0.4). CONCLUSION: Advanced MRI techniques at 3T, unraveled the nature of brain tissue damage in early MS and substantially improved clinical-radiological correlations in patients with minor deficits, as compared to conventional measures of disease.
Resumo:
Thermal and field-induced martensite-austenite transition was studied in melt spun Ni50.3Mn35.3Sn14.4 ribbons. Its distinct highly ordered columnarlike microstructure normal to ribbon plane allows the direct observation of critical fields at which field-induced and highly hysteretic reverse transformation starts (H=17kOe at 240K), and easy magnetization direction for austenite and martensite phases with respect to the rolling direction. Single phase L21 bcc austenite with TC of 313K transforms into a 7M orthorhombic martensite with thermal hysteresis of 21K and transformation temperatures of MS=226K, Mf=218K, AS=237K, and Af=244K
Resumo:
Despite that cognitive impairment is a known early feature present in multiple sclerosis (MS) patients, the biological substrate of cognitive deficits in MS remains elusive. In this study, we assessed whether T1 relaxometry, as obtained in clinically acceptable scan times by the recent Magnetization Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) sequence, may help identifying the structural correlate of cognitive deficits in relapsing-remitting MS patients (RRMS). Twenty-nine healthy controls (HC) and forty-nine RRMS patients underwent high-resolution 3T magnetic resonance imaging to obtain optimal cortical lesion (CL) and white matter lesion (WML) count/volume and T1 relaxation times. T1 z scores were then obtained between T1 relaxation times in lesion and the corresponding HC tissue. Patient cognitive performance was tested using the Brief Repeatable Battery of Neuro-psychological Tests. Multivariate analysis was applied to assess the contribution of MRI variables (T1 z scores, lesion count/volume) to cognition in patients and Bonferroni correction was applied for multiple comparison. T1 z scores were higher in WML (p < 0.001) and CL-I (p < 0.01) than in the corresponding normal-appearing tissue in patients, indicating relative microstructural loss. (1) T1 z scores in CL-I (p = 0.01) and the number of CL-II (p = 0.04) were predictors of long-term memory; (2) T1 z scores in CL-I (β = 0.3; p = 0.03) were independent determinants of long-term memory storage, and (3) lesion volume did not significantly influenced cognitive performances in patients. Our study supports evidence that T1 relaxometry from MP2RAGE provides information about microstructural properties in CL and WML and improves correlation with cognition in RRMS patients, compared to conventional measures of disease burden.
Resumo:
We report magnetic and magneto-optical measurements of two Mn12 single-molecule magnet derivatives isolated in organic glasses. Field-dependent magnetic circular dichroism (MCD) intensity curves (hysteresis cycles) are found to be essentially identical to superconducting quantum interference device magnetization results and provide experimental evidence for the potential of the optical technique for magnetic characterization. Optical observation of magnetic tunneling has been achieved by studying the decay of the MCD signal at weak applied magnetic field
Resumo:
Spherical carbon coated iron particles of nanometric diameter in the 510 nm range have been produced by arc discharge at near-atmospheric pressure conditions (using 58·10 4 Pa of He). The particles exhibit a crystalline dense iron core with an average diameter 7.4 ± 2.0 nm surrounded by a sealed carbon shell, shown by transmission electron microscopy (TEM), selected-area diffrac- tion (SAED), energy-dispersive X-ray analysis (STEM-EDX) and electron energy loss spectroscopy (EELS). The SAED, EDX and EELS results indicate a lack of traces of core oxidized phases showing an efficient protection role of the carbon shell. The magnetic properties of the nanoparticles have been investigated in the 5300 K temperature range using a superconducting quantum interference device (SQUID). The results reveal a superparamagnetic behaviour with an average monodomain diameter of 7.6 nm of the nanoparticles. The zero field cooled and field cooled (ZFC-FC)magnetization curves show a blocking temperature (TB)at room temperature very suitable for biomedical applications (drug delivery, magnetic resonance imaging MRI, hyperthermia).