931 resultados para Irrigation water quality
Resumo:
Several agencies in the United Kingdom have interest in the water quality of old navigational canals that have fallen into disuse after the decline of commercial canal transportation. The interested agencies desired a model to predict the water quantity and quality of inland navigational canals in order to evaluate management options to address the issues in the natural streams to which they discharge. Inland navigational canals have unique drivers of their hydrology and water quality compared to either natural streams, irrigation canals, or larger navigational canals connected to seas or oceans. Water in an inland canal is typically sourced from a reservoir and artificially pumped to a summit reach; its movement downhill is controlled by the activity of boats and overflow weirs. Stagnant impoundments between locks, which might normally be expected to result in a decrease in the concentration of sediment-associated pollutants, actually have surprisingly high levels of sediment due to boat traffic. Algal growth in the stagnant reach can be high. This paper describes a canal model developed to simulate hydrology and water quality in inland navigational canals. This model was successfully applied to the Kennet and Avon Canal to predict hydrology, sediment generation and transport, and algal growth and transport. The model is responsive to external influences such as sunlight, temperature, nutrient concentrations, boat traffic, and runoff from the contributing catchment area.
Resumo:
Bioavailable water concentrations of polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and organochlorine pesticides (OCP) were measured in the water column from Three Gorges Reservoir (TGR) collected in May 2008 using semipermeable membrane devices (SPMDs). The sampling sites spanned the whole reservoir from the upstream Chongqing to the great dam covering more than 600 km long distance with water flow velocities ranging from <0.05 to 1.5 m s(-1). This is the first experience of SPMD application in the biggest reservoir in the world. The results of water sampling rates based on performance reference compounds (PRC) were tested to be significantly correlated with water flow velocities in the big river. Results of back-calculated aqueous concentrations based on PRC showed obvious regional variations of PAH, PCB and OCP levels in the reservoir. Total PAH ranged from 13.8 to 97.2 ng L-1, with the higher concentrations occurring in the region of upstream and near the dam. Phenanthrene, fluoranthene, pyrene and chrysene were the predominant PAH compounds in TGR water. Total PCB ranged from 0.08 to 0.51 ng L-1, with the highest one occurring in the region near the dam. PCB 28, 52, 101, 138, 153, 180, 118 were the most abundant PCB congeners in the water. The total OCP ranged from 2.33 to 3.60 ng L-1 and the levels showed homogenous distribution in the whole reservoir. HCH, DDT and HCB, PeCB were the major compounds of OCP fingerprints. Based on water quality criteria, the TGR water could be designated as being polluted by HCB and PAH. Data on PAH, PCB and OCP concentrations found in this survey can be used as reference levels for future POP monitoring programmes in TGR. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The submersed macrophyte, Vallisneria natans L., was cultured in laboratory with NH (4) (+) -enriched tap water (1 mg L-1 NH4-N) for 2 months and the stressful effects of high ammonium (NH (4) (+) ) concentrations in the water column on this species was evaluated. The plant growth was severely inhibited by the NH (4) (+) supplement in the water column. The plant carbon and nitrogen metabolisms were disturbed by the NH (4) (+) supplement as indicated by the accumulation of free amino acids and the depletion of soluble carbohydrates in the plant tissues. The results suggested that high NH (4) (+) concentrations in the water column may hamper the restoration of submersed vegetation in eutrophic lakes.
Resumo:
During 28-29, September 2005, water was drawn from Hanjiang River and Houguan Lake to the Yangzi River via Sanjiao Lake and Nantaizi Lake in Wuhan in order to provide favorable conditions for ecosystem restoration. To evaluate the feasibility and validity of drawing water as a means of ecosystem restoration, zooplankton populations were studied 3 times (before, immediately after finishing and a month after drawing water) at seven locations from 27 Sept. 2005 to 2 Nov. 2005. Water quality in the lakes was mostly improved and zooplankton species richness decreased as soon as drawing water had finished but increased a month after drawing water. Zooplankton density and biomass was reduced in the lakes by drawing water but was increased at the entrance to Sanjiao Lake because of landform geometry change. Before drawing water, most species in Sanjiao Lake e.g., Brachionus sp. and Keratella sp. were tolerant of contamination. After drawing water oligotrophic-prone species such as Lecane ludwigii and Gastropus stylifer emerged. We conclude that drawing water could be important for improving water quality and favour ecosystem restoration. Dilution of nutrient concentrations may be an important role in the effect.
Resumo:
Blooms of cyanobacteria, or blue-greens, are known to produce chemicals, such as microcystins, which can be toxic to aquatic and terrestrial organisms. Although previous studies have examined the fate of microcystins in freshwater lakes, primary elimination pathways and factors affecting degradation and loss have not been fully explained. The goal of the present study was to explore sources of algal toxins and investigate the distribution and biodegradation of microcystins in water and sediment through laboratory and field analyses. Water and sediment samples were collected monthly from several locations in Lake Taihu from February 2005 to January 2006. Samples were analyzed for the presence of microcystin. Water and sediment were also used in laboratory studies to determine microcystin degradation rates by spiking environmental samples with known concentrations of the chemical and observing concentration changes over time. Some water samples were found to efficiently degrade microcystins. Microcystin concentrations dropped faster in water collected immediately above lake sediment (overlying water). Degradation in sediments was higher than in water. Based on spatial distribution analyses of microcystin in Lake Taihu, higher concentrations (relative to water concentrations) of the chemical were found in lake sediments. These data suggest that sediments play a critical role in microcystin degradation in aquatic systems. The relatively low levels of microcystins found in the environment are most likely due to bacterial biodegradation. Sediments play a crucial role as a source (to the water column) of bio-degrading bacteria and as a carbon-rich environment for bacteria to proliferate and metabolize microcystin and other biogenic toxins produced by cyanobacteria. These, and other, data provide important information that may be applied to management strategies for improvement of water quality in lakes, reservoirs and other water bodies. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of the research is to study the seasonal succession of protozoa community and the effect of water quality on the protozoa community to characterize biochemical processes occurring at a eutrophic Lake Donghu, a large shallow lake in Wuhan City, China. Samples of protozoa communities were obtained monthly at three stations by PFU (polyurethane foam unit) method over a year. Synchronously, water samples also were taken from the stations for the water chemical quality analysis. Six major variables were examined in a principal component analysis (PCA), which indicate the fast changes of water quality in this station I and less within-year variation and a comparatively stable water quality in stations II and III. The community data were analyzed using multivariate techniques, and we show that clusters are rather mixed and poorly separated, suggesting that the community structure is changing gradually, giving a slight merging of clusters form the summer to the autumn and the autumn to the winter. Canonical correspondence analysis (CCA) was used to infer the relationship between water quality variables and phytoplankton community structure, which changed substantially over the survey period. From the analysis of cluster and CCA, coupled by community pollution value (CPV), it is concluded that the key factors driving the change in protozoa community composition in Lake Donghu was water qualities rather than seasons. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Protozoan were collected from 16 stations in water system of Changde City (China) using the PFU method. Sampling programs were conduced on a yearly basis, with seasonal frequency at diverse sites in the water system and 488 species of protozoa was identified. At the same time, Water sampling from these stations was conducted and various water chemical parameters, including DO, COD, BOD5, NH3, TP, and Volatile Phenol, were analyzed. The aim of the research was, on one hand, using chemical method to take an investigation to the water pollution status of Changde City; on the other hand, using protozoan to make an evaluation to the water quality. With the chemical water parameters and protozoa data, a biotic index was derived for the investigated region. The species pollution value (SPV) of 469 protozoa species was established, and the community pollution value (CPV) calculated from SPV was used to evaluate water quality. The method of the biotic index was tested and the result showed that CPV calculated from SPV had a close correlation with the degree of water pollution (p < 0.00001). This indicated that the method of the biotic index is reliable. The water quality degrees divided by CPV were suggested. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Protozoans of Lake Donghu were collected from five stations using the PFU method. The sampling was conducted for one year and two times a month. The aim of this research was to test the applicability of a new protozoa biotic index, species pollution value (SPV) and community pollution value (CPV), established by the authors using data from the River Hanjiang. Each station's CPV was calculated from the SPV and the correlation analysis between the CPV and the comprehensive chemical index of stations I, II, III showed a significant correlation between them. The pollution status of the five stations was correctly evaluated by the CPV. These results suggested that the biotic index could be applied in water systems other than the River Hanjiang. The SPV of some protozoa species in Lake Donghu, not observed in the River Hanjiang were established. In order to further test the applicability of the biotic index, protozoan and chemistry data from the Rivers Torrente Stirone and Parma of Italy were used. The results showed that the CPV for the two rivers had a close relationship with the chemical water quality, which indicated that the biotic index could be applied in other parts of the world for the monitoring and estimating of water quality. Since the results of testing and verifying the biotic index in some other water systems in China were also satisfactory, this indicated that the biotic index has an extensive suitability for freshwater ecosystems. As long as more than 50% of the species in a sample have a SPV, the CPV calculated from the SPV is reliable for monitoring and evaluating water quality.
Resumo:
以-25 kPa作为土壤水势临界值,将作物—皿系数(Kcp)设为0.2,0.4,0.6,0.8,1.0,1.2六个处理,研究了不同灌溉水量时的番茄产量、品质和灌溉水利用效率。通过经济效益评价,研究了杨凌地区无压灌溉温室番茄获得最高经济效益时的作物—皿系数。通过张力计读数变化规律,研究了利用张力计测量无压灌溉湿润体内土壤水势的特点。研究结果表明,Kcp为0.2~0.8时,灌溉水量的增加对番茄产量影响不大;Kcp为1.0~1.2时,灌溉水量的增加能显著提高番茄产量和果实大小;Kcp为0.2时的灌溉水量能极显著提高番茄的灌溉水利用效率。在综合考虑了杨凌地区水价、番茄使用目的和市场价格波动规律后,Kcp取值1.2能获得最高的经济效益。作物—皿系数法计算灌溉水量时的滞后性特点和张力计埋设位置,是判断利用张力计监测土壤水势临界值方法有效性的两个重要因素。
Resumo:
Through an examination of global climate change models combined with hydrological data on deteriorating water quality in the Middle East and North Africa (MENA), we elucidate the ways in which the MENA countries are vulnerable to climate-induced impacts on water resources. Adaptive governance strategies, however, remain a low priority for political leaderships in the MENA region. To date, most MENA governments have concentrated the bulk of their resources on large-scale supply side projects such as desalination, dam construction, inter-basin water transfers, tapping fossil groundwater aquifers, and importing virtual water. Because managing water demand, improving the efficiency of water use, and promoting conservation will be key ingredients in responding to climate-induced impacts on the water sector, we analyze the political, economic, and institutional drivers that have shaped governance responses. While the scholarly literature emphasizes the importance of social capital to adaptive governance, we find that many political leaders and water experts in the MENA rarely engage societal actors in considering water risks. We conclude that the key capacities for adaptive governance to water scarcity in MENA are underdeveloped. © 2010 Springer Science+Business Media B.V.
Resumo:
The valuation of ecosystem services such as drinking water provision is of growing national and international interest. The cost of drinking water provision is directly linked to the quality of its raw water input, which is itself affected by upstream land use patterns. This analysis employs the benefit transfer method to quantify the economic benefits of water quality improvements for drinking water production in the Neuse River Basin in North Carolina. Two benefit transfer approaches, value transfer and function transfer, are implemented by combining the results of four previously published studies with data collected from eight Neuse Basin water treatment plants. The mean net present value of the cost reduction estimates for the entire Neuse Basin ranged from $2.7 million to $16.6 million for a 30% improvement in water quality over a 30-year period. The value-transfer approach tended to produce larger expected benefits than the function-transfer approach, but both approaches produced similar results despite the differences in their methodologies, time frames, study sites, and assumptions. © 2010 ASCE.
Resumo:
A reconnaissance of 23 paddy fields, from three Bangladesh districts, encompassing a total of 230 soil and rice plant samples was conducted to identify the extent to which trace element characteristics in soils and irrigation waters are reflected by the harvested rice crop. Field sites were located on two soil physiographic units with distinctly different As soil baseline and groundwater concentrations. For arsenic (As), both straw and grain trends closely fitted patterns observed for the soils and water. Grain concentration characteristics for selenium (Se), zinc (Zn), and nickel (Ni), however, were markedly different. Regressions of shoot and grain As against grain Se, Zn, and Ni were highly significant (P <0.001), exhibiting a pronounced decline in grain trace-nutrient quality with increasing As content. To validate this further, a pot experiment cultivar screening trial, involving commonly cultivated high yielding variety (HYV) rice grown alongside two U.S. rice varieties characterized as being As tolerant and susceptible, was conducted on an As-amended uniform soil. Findings from the trial confirmed that As perturbed grain metal(loid) balances, resulting in severe yield reductions in addition to constraining the levels of Se, Zn, and Ni in the grain.
Resumo:
Access to potable water is frequently said to be the defining world crisis of the twenty-first century. The argument is usually framed in terms of either direct environmental constraints or various totalistic views of how the political determines outcomes. There is little or no scope for the agency of practical politics. Both physical and human geographers tend to be dismissive of the possibilities of democratic politics ever resolving crises such as those of the geography of water provision, in part because of views of scientific expertise that devalue popular participation in decisions about technical matters such as water quality and distribution. Such dismissal also has much to do with a more generalized denigration of politics. Politics (the art of political deliberation, negotiation, and compromise) needs defending against its critics and many of its practitioners. Showing how politics is at work around the world in managing water problems and identifying the challenges that water problems pose for politics provides a retort to those who can only envisage inevitable destruction or a totalistic political panacea as the outcomes of the crisis of the century.
Resumo:
Nutrient loss from agricultural land following organic fertilizer spreading can lead to eutrophication and poor water quality. The risk of pollution is partly related to the soil water status during and after spreading. In response to these issues, a decision support system (DSS) for nutrient management has been developed to predict when soil and weather conditions are suitable for slurry spreading. At the core of the DSS, the Hybrid Soil Moisture Deficit (HSMD) model estimates soil water status relative to field capacity (FC) for three soil classes (well, moderately and poorly drained) and has potential to predict the occurrence of a transport vector when the soil is wetter than FC. Three years of field observation of volumetric water content was used to validate HSMD model predictions of water status and to ensure correct use and interpretation of the drainage classes. Point HSMD model predictions were validated with respect to the temporal and spatial variations in volumetric water content and soil strength properties. It was found that the HSMD model predictions were well related to topsoil water content through time, but a new class intermediate between poor and moderate, perhaps ‘imperfectly drained’, was needed. With correct allocations of a field into a drainage class, the HSMD model predictions reflect field scale trends in water status and therefore the model is suitable for use at the core of a DSS.
Resumo:
The water and wastewater industry in the UK accounts for around 3% of total energy use and just over 1% of total UK greenhouse gas emissions. Targets for greenhouse gas emissions reduction and higher renewable energy penetration, coupled with rising energy costs, growing demand for wastewater services and tightening EU water quality requirements, have led to an increased interest in alternative wastewater treatment methods. The use of short rotation coppice (SRC) willow for the treatment of wastewater effluent is one such alternative, which brings with it the dual benefits of wastewater treatment and production of biomass for energy. In order to assess the effectiveness of SRC willow, it is important to analyse the overall energy balance in terms of energy input versus energy output. This paper carries out an energy life cycle analysis of a specific SRC willow plantation in Northern Ireland to which farmyard washings (dirty water) are applied. The system boundaries include the establishment, maintenance, and harvesting of the plantation, along with the transport and drying of the wood for biomass combustion. The analysis shows that the overall energy balance is positive, and that the direct and indirect energy demands are 12% and 8% of gross energy production respectively. The energy demands of the plantation are compared with the energy required to treat an equivalent nutrient load in a conventional wastewater treatment plant. While a conventional plant consumes 2.6 MJ/m3 , the irrigation system consumes 1.6 MJ/m3 and the net energy production of the scenario is 48 MJ/m3 .