946 resultados para Irradiated Isotactic Polypropylene
Resumo:
Films made from a blend of poly(epsilon-caprolactone) and poly(vinyl chloride) (PCL/PVC) retained high crystallinity in a segregated PCL phase. Structural and morphological changes produced when the films were exposed to high potency ultraviolet (UV) irradiation for 10 h were measured by UV-Vis spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). They were different to those observed with homopolymer PCL and PVC films treated under the same conditions. The FTIR spectra of the PCL/PVC blend suggest that blending decreased the susceptibility of the PCL to crystallize when irradiated. Similarly, although scanning electron micrographs of PCL showed evidence of growth of crystalline domains, particularly after UV irradiation, the images of PCL/PVC were fairly featureless. It is apparent that the degradation behavior is strongly influenced by the interaction of the two polymers in the amorphous phase.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The photodegradation of a 1:1 w/w blend of polycaprolactone and poly(vinyl chloride) has been studied by following carbon dioxide emission during UV exposure. Similar measurements were performed for polycaprolactone and poly(vinyl chloride) homopolymers which were prepared and irradiated in the same way. It was found that the blend gave lower CO2 emission than either of the two homopolymers, indicating that the interaction of the two components in the blend provided a beneficial reduction of photodegradation. It is therefore deduced that the detailed morphological characteristics of the blend have a controlling influence over the photo-oxidation. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective: This study aims to investigate the effects of low-level laser therapy (LLLT) on muscle regeneration. For this purpose, the anterior tibialis muscle of 48 male Wistar rats received AlGaInP laser treatment (785 nm) after surgically-induced injury.Background Data: Few studies have been conducted on the effects of LLLT on muscle regeneration at different irradiation doses.Materials and Methods: The animals were randomized into four groups: uninjured rats (UN); uninjured and laser-irradiated rats (ULI); injured rats (IN); and injured and laser-irradiated rats (ILI). The direct contact laser treatment was started 24 h after surgery. An AlGaInP diode laser emitting 75 mW of continuous power at 785 nm was used for irradiation. The laser probe was placed at three treatment points to deliver 0.9 J per point, for a total dose of 2.7 J per treatment session. The animals were euthanized after treatment sessions 1, 2, and 4. Mounted sections were stained with hematoxylin and eosin and used for quantitative morphological analysis, in which the number of leukocytes and fibroblasts were counted over an area of 4480 mu m(2). The data were statistically analyzed by analysis of variance (ANOVA) and the Bonferroni t-test.Results: Quantitative data showed that the number of both polymorphonuclear and mononuclear leukocytes in the inflammatory infiltrate at the injury site was smaller in the ILI(1), ILI(2), and ILI(4) subgroups compared with their respective control subgroups (IN(1), IN(2), and IN(4)) for sessions 1, 2, and 4, respectively (p < 0.05). on the other hand, the number of fibroblasts increased after the fourth treatment session (p < 0.05). With regard to the regeneration of muscle fibers following injury, only after the fourth treatment session was it possible to find muscle precursor cells such as myoblasts and some myotubes in the ILI(4) subgroup.Conclusion: During the acute inflammatory phase, the AlGaInP laser treatment was found to have anti-inflammatory effects, reducing the number of leukocytes at the injury site and accelerating the regeneration of connective tissue.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Endo-polygalacturonase (endo-PG), exo-polygalacturonase (exo-PG) and pectin liase (PL) were produced by solid-state fermentation of a mixture of orange bagasse and wheat bran (1:1) with the filamentous fungus Penicillium viridicatum RFC3. This substrate was prepared with two moisture contents, 70% and 80%, and each was fermented in two types of container, Erlenmeyer flask and polypropylene pack. When Erlenmeyer flasks were used, the medium containing 80% of initial moisture afforded higher PL production while neither exo- nor endo-PG production was influenced by substrate moisture. The highest enzyme activities obtained were 0.70 U mL(-1) for endo-PG, 8.90 U mL(-1) for exo-PG, and 41.30 U mL(-1) for PL. However, when the fermentation was done in polypropylene packs, higher production of all three enzymes was obtained at 70% moisture (0.7 and 8.33 U mL(-1) for endo- and exo-PG and 100 U mL(-1) for PL). An increase in the pH and decrease in the reducing sugar content of the medium was observed. The fungus was able to produce pectin esterase and other depolymerizing enzymes such as xylanase, CMCase, protease and amylase. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The success of endodontic treatment depends on the complete elimination of microorganisms from the root canal system, thus the search for new procedures to eliminate them is justified. The aim of this study was to assess bacterial reduction after intracanal irradiation with the Er:YAG laser. The canals of 70 extracted human maxillary canines were prepared up to file #40 using 1% NaOCl, irrigated with 17% EDTA, and then washed with physiological solution activated by ultrasound. The roots were sterilized by autoclaving, inoculated with 10 mu l of a suspension containing 1.5 x 10(8) CFU/ml of Enterococcus faecalis ATCC 29212 and incubated at 37A degrees C for 72 h. The canals were irradiated with the Er:YAG laser using two energy settings: 60 mJ and 15 Hz, and 100 mJ and 10 Hz. The remaining bacteria were counted immediately and 48 h after laser irradiation. The results showed a high bacterial reduction at both time points. With 60 mJ and 15 Hz there was an immediate reduction of 99.73% and the reduction was 77.02% after 48 h, and with 100 mJ and 10 Hz there was an immediate reduction of 99.95% and the reduction was 84.52% after 48 h. Although the best results were observed with 100 mJ of energy, the difference between the two settings was not statistically significant. The count performed 48 h after irradiation showed that E. faecalis were able to survive, and can grow even from small numbers.
Resumo:
Objective: the ability of the laser irradiation to promote the cleaning and disinfection of the radicular canal system has become this type of treatment in a viable and real alternative in endodontics. The purpose of this study was to evaluate the apical marginal sealing of root canal fillings after the irradiation with the laser of Nd:YAG or of Er:YAG. Materials and Methods: Forty-two human, extracted single-rooted teeth had their crowns sectioned and the root canals prepared with a no. 70 K-file. Then, they were dried and divided into three groups according to canal wall treatment: group 1: the canals were filled with EDTA for 3 min, followed by irrigation with 1% sodium hypochlorite solution; group 2: the canal walls were irradiated with Nd:YAG laser; and group 3: the canal walls were irradiated with Er:YAG laser. Afterwards, the root canals were obturated by the lateral condensation technique. The roots were externally waterproof, except in the apical foramen and immerged in 2% methylene blue aqueous solution during 48 hours. Results: the results showed that the largest infiltrations happened in the group 3-Er:YAG (7.3 mm), proceeded by the group 1-EDTA (1.6 mm) and by the group 2-Nd:YAG (0.6 mm). The group Er:YAG differed statistically of the others (p < 0.05). Conclusion: It was concluded that the Er:YAG laser intracanal irradiation previously to the root canal filling must be used with caution until future research is define the best parameters for it's use.
Resumo:
Objective: the Nd:YAG laser irradiation of dental enamel was evaluated in enamel demineralization experiments in a Streptococcus mutans culture media. Summary Background Data: Previous studies had shown that a continuous wave Nd:YAG laser at an energy of approximately 67 mJ may induce an increased acid resistance in human dental enamel when exposed to severe demineralization conditions. Methods: Enamel windows of 3 x 4 cm in the buccal surface were irradiated with a continuous wave Nd:YAG laser at a wavelength of 1,064 Ecm using energy densities of from 83.75 to 187.50 J/cm(2), Enamel windows of 3 x 4 cm on the lingual surface served as control (without the laser irradiation). The enamel windows were then exposed to a Streptococcus mutans culture media at a temperature of 37 degrees C for 15 and 21 days. The laser effects and demineralization were examined both by optical microscopy and scanning electron microscopy (SEM), Results: A comparison between the lased and the unlased windows of enamel showed fusion and recrystalization of the enamel and increased acid-resistance in all groups irradiated with the Nd:YAG laser, on the other hand, the 3 x 4 delimited enamel surfaces from the control group (not irradiated with the Nd:YAG laser) showed 100% deminerization, Conclusions: These findings are consistent with the finding that laser irradiation of dental results in significant reduction of the effective solubility of enamel mineral.
Resumo:
The aim of this work is to evaluate the effect of surface treatment with Er:YAG and Nd:YAG lasers on resin composite bond strength to recently bleached enamel. In this study, 120 bovine incisors were distributed into two groups: group C: without bleaching treatment; group B: bleached with 35% hydrogen peroxide. Each group was divided into three subgroups: subgroup N: without laser treatment; subgroup Nd: irradiation with Nd:YAG laser; subgroup Er: irradiation with Er:YAG laser. The adhesive system (Adper Single Bond 2) was then applied and composite buildups were constructed with Filtek Supreme composite. The teeth were sectioned to obtain enamel-resin sticks (1 x 1 mm) and submitted to microtensile bond testing. The data were statistically analyzed by the ANOVA and Tukey tests. The bond strength values in the bleached control group (5.57 MPa) presented a significant difference in comparison to the group bleached and irradiated with Er:YAG laser (13.18 MPa) or Nd:YAG (25.67 MPa). The non-bleached control group presented mean values of 30.92 MPa, with statistical difference of all the others groups. The use of Nd:YAG and Er:YAG lasers on bleached specimens was able to improve the bond strengths of them.
Resumo:
Background and Objectives. The adhesion of dental materials is important for the success of treatment. The aim of this study is to evaluate the bond strength of a composite resin applied with a self-etching adhesive system in different dentins after irradiation with Er:YAG and Nd:YAG lasers, observing their morphologic pattern using Scanning Electronic Microscopy (SEM). Materials and Methods. The buccal surface of 72 bovine incisors was worn until exposure of medium depth dentin. The specimens were divided into three groups; GI: normal, GII: demineralized and GIII: hypermineralized dentin. These were also divided into two subgroups; A-irradiated for 30 s with Er:YAG laser in noncontact mode at 40 mJ and 6 Hz and B- irradiated for 30 s with Nd:YAG laser in contact mode at 60 mJ and 10 Hz. The adhesive system Clearfil SE. Bond (Kuraray) and composite resin Tetric Ceram (Vivadent) were applied on the irradiated area by the incremental technique. After storage for 24 h in distilled water at 37 degrees C, the specimens were submitted to the shear strength test in a universal testing machine (EMIC) at a crosshead speed of 1.0 mm/min. Other specimens were made to be analyzed by SEM. Results. The results were statistically analyzed by Analysis of Variance and the Tukey test. Regardless of the type of dentin, the bond strength of specimens irradiated with the Nd:YAG laser (8,94 +/- 2,07) was higher compared to specimens irradiated with the Er:YAG laser (7,03 +/- 2,47); the highest bond strength was obtained for the group of hypermineralized dentin irradiated with the Nd:YAG laser. The SEM analysis showed that the Er:YAG laser caused opening of tubules and the Nd:YAG laser produced areas of fusion as well as regions of opening of dentinal tubules. Conclusions. The dentin showed different morphological patterns and the laser promote alterations on their surfaces, influencing the bond strength of the composite resin. (C) 2010 Laser Institute of America.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)