962 resultados para Intrusion errors
Resumo:
The main objective of this work was to investigate the application of experimental design techniques for the identification of Michaelis-Menten kinetic parameters. More specifically, this study attempts to elucidate the relative advantages/disadvantages of employing complex experimental design techniques in relation to equidistant sampling when applied to different reactor operation modes. All studies were supported by simulation data of a generic enzymatic process that obeys to the Michaelis-Menten kinetic equation. Different aspects were investigated, such as the influence of the reactor operation mode (batch, fed-batch with pulse wise feeding and fed-batch with continuous feeding) and the experimental design optimality criteria on the effectiveness of kinetic parameters identification. The following experimental design optimality criteria were investigated: 1) minimization of the sum of the diagonal of the Fisher information matrix (FIM) inverse (A-criterion), 2) maximization of the determinant of the FIM (D-criterion), 3) maximization of the smallest eigenvalue of the FIM (E-criterion) and 4) minimization of the quotient between the largest and the smallest eigenvalue (modified E-criterion). The comparison and assessment of the different methodologies was made on the basis of the Cramér-Rao lower bounds (CRLB) error in respect to the parameters vmax and Km of the Michaelis-Menten kinetic equation. In what concerns the reactor operation mode, it was concluded that fed-batch (pulses) is better than batch operation for parameter identification. When the former operation mode is adopted, the vmax CRLB error is lowered by 18.6 % while the Km CRLB error is lowered by 26.4 % when compared to the batch operation mode. Regarding the optimality criteria, the best method was the A-criterion, with an average vmax CRLB of 6.34 % and 5.27 %, for batch and fed-batch (pulses), respectively, while presenting a Km’s CRLB of 25.1 % and 18.1 %, for batch and fed-batch (pulses), respectively. As a general conclusion of the present study, it can be stated that experimental design is justified if the starting parameters CRLB errors are inferior to 19.5 % (vmax) and 45% (Km), for batch processes, and inferior to 42 % and to 50% for fed-batch (pulses) process. Otherwise equidistant sampling is a more rational decision. This conclusion clearly supports that, for fed-batch operation, the use of experimental design is likely to largely improve the identification of Michaelis-Menten kinetic parameters.
Resumo:
Mestrado em Auditoria
Resumo:
The National Cancer Institute (NCI) method allows the distributions of usual intake of nutrients and foods to be estimated. This method can be used in complex surveys. However, the user must perform additional calculations, such as balanced repeated replication (BRR), in order to obtain standard errors and confidence intervals for the percentiles and mean from the distribution of usual intake. The objective is to highlight adaptations of the NCI method using data from the National Dietary Survey. The application of the NCI method was exemplified analyzing the total energy (kcal) and fruit (g) intake, comparing estimations of mean and standard deviation that were based on the complex design of the Brazilian survey with those assuming simple random sample. Although means point estimates were similar, estimates of standard error using the complex design increased by up to 60% compared to simple random sample. Thus, for valid estimates of food and energy intake for the population, all of the sampling characteristics of the surveys should be taken into account because when these characteristics are neglected, statistical analysis may produce underestimated standard errors that would compromise the results and the conclusions of the survey.
Resumo:
Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks (WSNs). The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism based on the cyclic extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) problem for a cluster-tree WSN, assuming bounded communication errors. The objective is to meet all end-to-end deadlines of a predefined set of time-bounded data flows while minimizing the energy consumption of the nodes by setting the TDCS period as long as possible. Sinceeach cluster is active only once during the period, the end-to-end delay of a given flow may span over several periods when there are the flows with opposite direction. The scheduling tool enables system designers to efficiently configure all required parameters of the IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs in the network design time. The performance evaluation of thescheduling tool shows that the problems with dozens of nodes can be solved while using optimal solvers.
Resumo:
WiDom is a previously proposed prioritized medium access control protocol for wireless channels. We present a modification to this protocol in order to improve its reliability. This modification has similarities with cooperative relaying schemes, but, in our protocol, all nodes can relay a carrier wave. The preliminary evaluation shows that, under transmission errors, a significant reduction on the number of failed tournaments can be achieved.
Resumo:
Preventable visual loss in children is an important public health problem. The critical period of susceptibility to deprivation or abnormal visual experience has been identified since the early 1970s. Preventable visual loss caused by amblyopia (0.3%–4%) and its risk factors such as strabismus (2.1%–4.6%) and uncorrected refractive errors (5%–7.7%) represent an important public health problem. Thus the primary justification for preschool vision screening is the detection of amblyopia or amblyogenic refractive, strabismic, or ocular disease conditions. However in Portugal there has been little investigation regarding prevalence of visual anomalies among school-age children. Data on the prevalence are lacking but are needed for planning vision services. Aims: 1) Determine the prevalence of strabismus; 2) Determine the prevalence of decreased visual acuity; 3) Determine the prevalence of uncorrected refractive error.
Resumo:
Mestrado em Intervenção Sócio-Organizacional na Saúde - Área de especialização: Políticas de Administração e Gestão de Serviços de Saúde
Resumo:
Environment monitoring has an important role in occupational exposure assessment. However, due to several factors is done with insufficient frequency and normally don´t give the necessary information to choose the most adequate safety measures to avoid or control exposure. Identifying all the tasks developed in each workplace and conducting a task-based exposure assessment help to refine the exposure characterization and reduce assessment errors. A task-based assessment can provide also a better evaluation of exposure variability, instead of assessing personal exposures using continuous 8-hour time weighted average measurements. Health effects related with exposure to particles have mainly been investigated with mass-measuring instruments or gravimetric analysis. However, more recently, there are some studies that support that size distribution and particle number concentration may have advantages over particle mass concentration for assessing the health effects of airborne particles. Several exposure assessments were performed in different occupational settings (bakery, grill house, cork industry and horse stable) and were applied these two resources: task-based exposure assessment and particle number concentration by size. The results showed interesting results: task-based approach applied permitted to identify the tasks with higher exposure to the smaller particles (0.3 μm) in the different occupational settings. The data obtained allow more concrete and effective risk assessment and the identification of priorities for safety investments.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Gestão e Sistemas Ambientais
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática
Resumo:
This paper presents a novel approach to WLAN propagation models for use in indoor localization. The major goal of this work is to eliminate the need for in situ data collection to generate the Fingerprinting map, instead, it is generated by using analytical propagation models such as: COST Multi-Wall, COST 231 average wall and Motley- Keenan. As Location Estimation Algorithms kNN (K-Nearest Neighbour) and WkNN (Weighted K-Nearest Neighbour) were used to determine the accuracy of the proposed technique. This work is based on analytical and measurement tools to determine which path loss propagation models are better for location estimation applications, based on Receive Signal Strength Indicator (RSSI).This study presents different proposals for choosing the most appropriate values for the models parameters, like obstacles attenuation and coefficients. Some adjustments to these models, particularly to Motley-Keenan, considering the thickness of walls, are proposed. The best found solution is based on the adjusted Motley-Keenan and COST models that allows to obtain the propagation loss estimation for several environments.Results obtained from two testing scenarios showed the reliability of the adjustments, providing smaller errors in the measured values values in comparison with the predicted values.
Resumo:
A noncoherent vector delay/frequency-locked loop (VDFLL) architecture for GNSS receivers is proposed. A bank of code and frequency discriminators feeds a central extended Kalman filter that estimates the receiver's position and velocity, besides the clock error. The VDFLL architecture performance is compared with the one of the classic scalar receiver, both for scintillation and multipath scenarios, in terms of position errors. We show that the proposed solution is superior to the conventional scalar receivers, which tend to lose lock rapidly, due to the sudden drops of the received signal power.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia do Ambiente
Resumo:
Trabalho realizado sob orientação do Prof. António Brandão Moniz para a disciplina “Factores Sociais da Inovação” do Mestrado Engenharia Informática realizado na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa
Resumo:
The interlaminar fracture toughness in pure mode II (GIIc) of a Carbon-Fibre Reinforced Plastic (CFRP) composite is characterized experimentally and numerically in this work, using the End-Notched Flexure (ENF) fracture characterization test. The value of GIIc was extracted by a new data reduction scheme avoiding the crack length measurement, named Compliance-Based Beam Method (CBBM). This method eliminates the crack measurement errors, which can be non-negligible, and reflect on the accuracy of the fracture energy calculations. Moreover, it accounts for the Fracture Process Zone (FPZ) effects. A numerical study using the Finite Element Method (FEM) and a triangular cohesive damage model, implemented within interface finite elements and based on the indirect use of Fracture Mechanics, was performed to evaluate the suitability of the CBBM to obtain GIIc. This was performed comparing the input values of GIIc in the numerical models with the ones resulting from the application of the CBBM to the numerical load-displacement (P-) curve. In this numerical study, the Compliance Calibration Method (CCM) was also used to extract GIIc, for comparison purposes.