949 resultados para Intrinsic doping


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transparent conducting oxides (TCOs) have been largely used in the optoelectronic industry due to their singular combination of low electrical resistivity and high optical transmittance. They are usually deposited by magnetron sputtering systems being applied in several devices, specifically thin film solar cells (TFSCs). Sputtering targets are crucial components of the sputtering process, with many of the sputtered films properties dependent on the targets characteristics. The present thesis focuses on the development of high quality conductive Al-doped ZnO (AZO) ceramic sputtering targets based on nanostructured powders produced by emulsion detonation synthesis method (EDSM), and their application as a TCO. In this sense, the influence of several processing parameters was investigated from the targets raw-materials synthesis to the application of sputtered films in optoelectronic devices. The optimized manufactured AZO targets present a final density above 99 % with controlled grain size, an homogeneous microstructure with a well dispersed ZnAl2O4 spinel phase, and electrical resistivities of ~4 × 10-4 Ωcm independently on the Al-doping level among 0.5 and 2.0 wt. % Al2O3. Sintering conditions proved to have a great influence on the properties of the targets and their performance as a sputtering target. It was demonstrated that both deposition process and final properties of the films are related with the targets characteristics, which in turn depends on the initial powder properties. In parallel, the influence of several deposition parameters in the film´s properties sputtered from these targets was investigated. The sputtered AZO TCOs showed electrical properties at room temperature that are superior to simple oxides and comparable to a reference TCO – indium tin oxide (ITO), namely low electrical resistivity of 5.45 × 10-4 Ωcm, high carrier mobility (29.4 cm2V-1s-1), and high charge carrier concentration (3.97 × 1020 cm-3), and also average transmittance in the visible region > 80 %. These superior properties allowed their successful application in different optoelectronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patients with unilateral cleft lip display characteristic nasal changes that are independent of the degree of deformity. Defenders of the intrinsic theory consider these deformities to be due to embryogenic alterations of the alar nasal cartilages. Those that propose the extrinsic theory defend the thesis that the deformity is due to disorganization of the perioral muscles deformed by the cleft. The purpose of this study is to contribute histological evidence to help clarify the issue. PATIENTS AND METHODS: Specimens of the lateral portion of both the healthy and the cleft side of the alar cartilages were obtained from 18 patients. These uniformly cut specimens were stained by hematoxylin and eosin. Samples from 2 patients were excluded due to imperfections. The same pathologist examined all the slides. He was unaware of the origins of the specimens; he counted the number of chondrocytes and quantified the cartilage matrixes. RESULTS: All data was analyzed statistically, and no significant statistical differences were apparent, either in the number of chondrocytes or the cartilage matrix between the healthy side and the cleft side. DISCUSSION: These results apparently support the group that defend the extrinsic theory; nevertheless, the doubt about the composition of the cartilage matrix remains, not only concerning the glycosaminoglycans that compose them, but also regarding elastin and collagen and its linkages that can cause different degrees of collagen consistency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vanadium dioxide (VO2) is a promising material with large interest in construction industry and architecture, due to its thermochromic properties. This material may be used to create "smart" coatings that result in improvements in the buildings energy efficiency, by reducing heat exchanges and, consequently, the need for acclimatization. In this work, VO2 thin films and coatings were produced and tested in laboratory, to apply in architectural elements, such as glass, rooftop tiles and exterior paints. Thin films were produced by RF magnetron sputtering and VO2 nanoparticles were obtained through hydrothermal synthesis, aiming to create "smart" windows and tiles, respectively. These coatings have demonstrated the capability to modulate the transmittance of infrared radiation by around 20%. The VO2 nanoparticle coatings were successfully applied on ceramic tiles. The critical temperature was reduced to around 40ºC by tungsten doping. Ultimately, two identical house models were built, in order to test the VO2 coatings, in real atmospheric conditions during one of the hottest months of the year, in Portugal – August.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work presented in this thesis explores novel routes for the processing of bio-based polymers, developing a sustainable approach based on the use of alternative solvents such as supercritical carbon dioxide (scCO2), ionic liquids (ILs) and deep eutectic solvents (DES). The feasibility to produce polymeric foams via supercritical fluid (SCF) foaming, combined with these solvents was assessed, in order to replace conventional foaming techniques that use toxic and harmful solvents. A polymer processing methodology is presented, based on SCF foaming and using scCO2 as a foaming agent. The SCF foaming of different starch based polymeric blends was performed, namely starch/poly(lactic acid) (SPLA) and starch/poly(ε-caprolactone) (SPCL). The foaming process is based on the fact that CO2 molecules can dissolve in the polymer, changing their mechanical properties and after suitable depressurization, are able to create a foamed (porous) material. In these polymer blends, CO2 presents limited solubility and in order to enhance the foaming effect, two different imidazolium based ILs (IBILs) were combined with this process, by doping the blends with IL. The use of ILs proved useful and improved the foaming effect in these starch-based polymer blends. Infrared spectroscopy (FTIR-ATR) proved the existence of interactions between the polymer blend SPLA and ILs, which in turn diminish the forces that hold the polymeric structure. This is directly related with the ability of ILs to dissolve more CO2. This is also clear from the sorption experiments results, where the obtained apparent sorption coefficients in presence of IL are higher compared to the ones of the blend SPLA without IL. The doping of SPCL with ILs was also performed. The foaming of the blend was achieved and resulted in porous materials with conductivity values close to the ones of pure ILs. This can open doors to applications as self-supported conductive materials. A different type of solvents were also used in the previously presented processing method. If different applications of the bio-based polymers are envisaged, replacing ILs must be considered, especially due to the poor sustainability of some ILs and the fact that there is not a well-established toxicity profile. In this work natural DES – NADES – were the solvents of choice. They present some advantages relatively to ILs since they are easy to produce, cheaper, biodegradable and often biocompatible, mainly due to the fact that they are composed of primary metabolites such as sugars, carboxylic acids and amino-acids. NADES were prepared and their physicochemical properties were assessed, namely the thermal behavior, conductivity, density, viscosity and polarity. With this study, it became clear that these properties can vary with the composition of NADES, as well as with their initial water content. The use of NADES in the SCF foaming of SPCL, acting as foaming agent, was also performed and proved successful. The SPCL structure obtained after SCF foaming presented enhanced characteristics (such as porosity) when compared with the ones obtained using ILs as foaming enhancers. DES constituted by therapeutic compounds (THEDES) were also prepared. The combination of choline chloride-mandelic acid, and menthol-ibuprofen, resulted in THEDES with thermal behavior very distinct from the one of their components. The foaming of SPCL with THEDES was successful, and the impregnation of THEDES in SPCL matrices via SCF foaming was successful, and a controlled release system was obtained in the case of menthol-ibuprofen THEDES.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The issues concerning Crisis Situations under the scope of police activity, raised after incidents considered critical, has emerged with greater intensity during the most recent decades, posing a major challenge for police forces around the world. These are situations or events of crucial importance, involving hostage taken or barricaded individuals, in which inevitably human lives are at risk, requiring from law enforcement agencies a specific response capability, i.e., a type of intervention not framed under the parameters considered as routine, in order to obtain solutions to minimize the possibility of casualties. Because this is about impacting situations of extreme gravity, where the preservation of human lives is concerned and, in many cases, the very Rule of Law as well, we understand the need for police forces to adapt to new procedures and working methods. Such procedures are an enormously complex task that requires the coordination and articulation of several components, including not infrequently the performance of different police forces, as well as organizations and entities with varied powers and duties, which implies the need for effective management. This explains the emergence of Crisis Management Structures, imposing to determine which are their fundamental components, their importance, how they interconnect, and their major goal. The intrinsic features will also be analyzed in the aspect that we consider to be the fundamental groundwork of a Crisis Management Structure, i.e., Negotiation itself, considering it as a kind of police intervention, where a wide range of procedures feeds a channel of dialogue, aiming at minimizing the damage resultant from an extreme action, in particular, to prevent the death of any of those involved. This is in essence the path we have chosen to develop this study, trying to find out an answer to the fundamental question: What model of Crisis Management Structure should be adopted to manage a critical event involving hostage negotiation?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resilience is the intrinsic capacity which allows individuals to adapt to adverse situations. Among unemployed, resilience obtains a particular importance as a must-required skill to face unemployment and make it possible to return to the labour market. The present work aims at discover which social and individual aspects are most responsible to increase resilience levels among the unemployed. In order to find those aspects, a questionnaire was applied to a sample of Portuguese unemployed. The results were then analysed and interpreted, and some of the possible solutions able to increase resilience levels among the Portuguese unemployed were listed and justified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of stem cells is a promising therapeutic approach for the substantial challenge to regenerate cartilage. Considering the two prerequisites, namely the use of a 3D system to enable the chondrogenic differentiation and growth factors to avoid dedifferentiation, the diffusion efficiency of essential biomolecules is an intrinsic issue. We already proposed a liquified bioencapsulation system containing solid microparticles as cell adhesion sites1. Here, we intend to use the optimized system towards chondrogenic differentiation by encapsulating stem cells and collagenII-TGF-β3 PLLA microparticles. As a proof-of-concept, magnetite-nanoparticles were incorporated into the multilayered membrane. This can be a great advantage after implantation procedures to fixate the capsules in situ with the held of an external magnetic patch and for the follow-up through imaging. Results showed that the production of glycosaminoglycans and the expression of cartilage-relevant markers (collagen II, Sox9, aggrecan, and COMP) increased up to 28 days, while hypertrophic (collagen X) and fibrotic (collagen I) markers were downregulated. The presence of nanofibers in the newly deposited ECM was visualized by SEM, which resembles the collagen fibrils of native cartilage. The presence of the major constituent of cartilage, collagen II, was detected by immunocytochemistry and afranin-O and alcian blue stainings revealed a basophilic ECM deposition, which is characteristic of neocartilage. These findings suggest that the proposed system may provide a suitable environment for chondrogenic differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório de estágio de mestrado em Ensino de Música

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The regeneration of soft biological tissues requires new substitutes that exhibit mechanical properties similar to the native tissue. Herein, thin saloplastic membranes with tunable physical properties are prepared by complexation of chitosan and alginate solutions containing different concentrations of sodium chloride. Polyelectrolyte complexes (PECs) are transferred to flat Petri dishes for compaction into membrane shapes by sedimentation and solvent evaporation. All membranes are resistant to degradation by lysozyme and are stable in solutions with pH values between 1 and 13. Immersing the different membranes in new doping solutions of increasing salt concentrations triggers the typical saloplastic behavior, with a high water absorption and decrease of the rigidity and ultimate tensile strength. The range of such variations is tuned by the sodium chloride amount used in the synthesis: high salt concentrations increase water uptake and tensile moduli, while decreasing the ultimate strength. Cellular assays demonstrate high proliferation rates and viability of L929 fibroblasts seeded onto the most rigid membranes. The results validate the use of saloplastic membranes as soft tissue substitutes for future biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assessment of concrete mechanical properties during construction of concrete structures is of paramount importance for many intrinsic operations. However many of the available non-destructive methods for mechanical properties have limitations for use in construction sites. One of such methodologies is EMM-ARM, which is a variant of classic resonant frequency methods. This paper aims to demonstrate the efforts towards in-situ applicability of EMMARM, as to provide real-time information about concrete mechanical properties such as E-modulus and compressive strength. To achieve the aforementioned objective, a set of adaptations to the method have been successfully implemented and tested: (i) the reduction of the beam span; (ii) the use of a different mould material and (iii) a new support system for the beams. Based on these adaptations, a reusable mould was designed to enable easier systematic use of EMMARM. A pilot test was successfully performed under in-situ conditions during a bridge construction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório de atividade profissional de mestrado em Ensino de Educação Física nos Ensinos Básico e Secundário

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Literatura - Especialidade em Teoria da Literatura

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zn1−xCoxO films with different Co concentrations (with x=0.00, 0.10, 0.15, and 0.30) were grown by pulsed laser deposition (PLD) technique. The structural and optical properties of the films were investigated by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy and photoluminescence (PL). The magnetic properties were measured by conventional magnetometry using a SQUID and simulated by ab-initio calculations using Korring–Khon–Rostoker (KKR) method combined with coherent potential approximation (CPA). The effect of Co-doping on the GIXRD and Raman peaks positions, shape and intensity is discussed. PL studies demonstrate that Co-doping induces a decrease of the bandgap energy and quenching of the UV emission. They also suggest the presence of Zn interstitials when x≥0.15. The 10% Co-doped ZnO film shows ferromagnetism at 390 K with a spontaneous magnetic moment ≈4×10−5 emu and coercive field ≈0.17 kOe. The origin of ferromagnetism is explained based on the calculations using KKR method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Literatura (área de especialização em Literatura Portuguesa).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Arquitectura / Cultura Arquitectónica.