897 resultados para Intolérance au glucose
Resumo:
Comprend : Discours sur l'état des lettres ; Discours sur l'état des beaux-arts
Resumo:
Comprend : Discours sur l'état des lettres ; Discours sur l'état des beaux-arts
Resumo:
BACKGROUND: The liver plays an important role in glucose and lactate metabolism. Major hepatectomy may therefore be suspected to cause alterations of glucose and lactate homeostasis. METHODS: Thirteen subjects were studied: six patients after major hepatectomy and seven healthy subjects who had fasted overnight. Glucose turnover was measured with 6,6(2)H glucose. Lactate metabolism was assessed using two complementary approaches: 13C-glucose synthesis and 13CO2 production from an exogenous 13C-labeled lactate load infused over 15 minutes were measured, then the plasma lactate concentrations observed over 185 minutes after lactate load were fitted using a biexponential model to calculate lactate clearance, endogenous production, and half-lives. RESULTS: Three to five liver segments were excised. Compared to healthy controls, the following results were observed in the patients: 1) normal endogenous glucose production; 2) unchanged 13C-lactate oxidation and transformation into glucose; 3) similar basal plasma lactate concentration, lactate clearance, and lactate endogenous production; 4) decreased plasma lactate half-life 1 and increased half-life 2. CONCLUSIONS: Glucose and lactate metabolism are well maintained in patients after major hepatectomy, demonstrating a large liver functional reserve. Reduction in the size of normal liver parenchyma does not lead to hyperlactatemia. The use of a pharmacokinetic model, however, allows the detection of subtle alterations of lactate metabolism.
Resumo:
Référence bibliographique : Rol, 54167
Resumo:
The effect of exendin-(9-39), a described antagonist of the glucagon-like peptide-1 (GLP-1) receptor, was evaluated on the formation of cAMP- and glucose-stimulated insulin secretion (GSIS) by the conditionally immortalized murine betaTC-Tet cells. These cells have a basal intracellular cAMP level that can be increased by GLP-1 with an EC50 of approximately 1 nM and can be decreased dose dependently by exendin-(9-39). This latter effect was receptor dependent, as a beta-cell line not expressing the GLP-1 receptor was not affected by exendin-(9-39). It was also not due to the endogenous production of GLP-1, because this effect was observed in the absence of detectable preproglucagon messenger RNA levels and radioimmunoassayable GLP-1. Importantly, GSIS was shown to be sensitive to this basal level of cAMP, as perifusion of betaTC-Tet cells in the presence of exendin-(9-39) strongly reduced insulin secretion. This reduction of GSIS, however, was observed only with growth-arrested, not proliferating, betaTC-Tet cells; it was also seen with nontransformed mouse beta-cells perifused in similar conditions. These data therefore demonstrated that 1) exendin-(9-39) is an inverse agonist of the murine GLP-1 receptor; 2) the decreased basal cAMP levels induced by this peptide inhibit the secretory response of betaTC-Tet cells and mouse pancreatic islets to glucose; 3) as this effect was observed only with growth-arrested cells, this indicates that the mechanism by which cAMP leads to potentiation of insulin secretion is different in proliferating and growth-arrested cells; and 4) the presence of the GLP-1 receptor, even in the absence of bound peptide, is important for maintaining elevated intracellular cAMP levels and, therefore, the glucose competence of the beta-cells.
Resumo:
Référence bibliographique : Rol, 56708