983 resultados para Internal flow
Resumo:
Linear stability and the nonmodal transient energy growth in compressible plane Couette flow are investigated for two prototype mean flows: (a) the uniform shear flow with constant viscosity, and (b) the nonuniform shear flow with stratified viscosity. Both mean flows are linearly unstable for a range of supersonic Mach numbers (M). For a given M, the critical Reynolds number (Re) is significantly smaller for the uniform shear flow than its nonuniform shear counterpart; for a given Re, the dominant instability (over all streamwise wave numbers, α) of each mean flow belongs to different modes for a range of supersonic M. An analysis of perturbation energy reveals that the instability is primarily caused by an excess transfer of energy from mean flow to perturbations. It is shown that the energy transfer from mean flow occurs close to the moving top wall for “mode I” instability, whereas it occurs in the bulk of the flow domain for “mode II.” For the nonmodal transient growth analysis, it is shown that the maximum temporal amplification of perturbation energy, Gmax, and the corresponding time scale are significantly larger for the uniform shear case compared to those for its nonuniform counterpart. For α=0, the linear stability operator can be partitioned into L∼L̅ +Re2 Lp, and the Re-dependent operator Lp is shown to have a negligibly small contribution to perturbation energy which is responsible for the validity of the well-known quadratic-scaling law in uniform shear flow: G(t∕Re)∼Re2. In contrast, the dominance of Lp is responsible for the invalidity of this scaling law in nonuniform shear flow. An inviscid reduced model, based on Ellingsen-Palm-type solution, has been shown to capture all salient features of transient energy growth of full viscous problem. For both modal and nonmodal instability, it is shown that the viscosity stratification of the underlying mean flow would lead to a delayed transition in compressible Couette flow.
Resumo:
The method of stress characteristics has been employed to compute the end-bearing capacity of driven piles. The dependency of the soil internal friction angle on the stress level has been incorporated to achieve more realistic predictions for the end-bearing capacity of piles. The validity of the assumption of the superposition principle while using the bearing capacity equation based on soil plasticity concepts, when applied to deep foundations, has been examined. Fourteen pile case histories were compiled with cone penetration tests (CPT) performed in the vicinity of different pile locations. The end-bearing capacity of the piles was computed using different methods, namely, static analysis, effective stress approach, direct CPT, and the proposed approach. The comparison between predictions made by different methods and measured records shows that the stress-level-based method of stress characteristics compares better with experimental data. Finally, the end-bearing capacity of driven piles in sand was expressed in terms of a general expression with the addition of a new factor that accounts for different factors contributing to the bearing capacity. The influence of the soil nonassociative flow rule has also been included to achieve more realistic results.
Resumo:
Compiler optimizations need precise and scalable analyses to discover program properties. We propose a partially flow-sensitive framework that tries to draw on the scalability of flow-insensitive algorithms while providing more precision at some specific program points. Provided with a set of critical nodes — basic blocks at which more precise information is desired — our partially flow-sensitive algorithm computes a reduced control-flow graph by collapsing some sets of non-critical nodes. The algorithm is more scalable than a fully flow-sensitive one as, assuming that the number of critical nodes is small, the reduced flow-graph is much smaller than the original flow-graph. At the same time, a much more precise information is obtained at certain program points than would had been obtained from a flow-insensitive algorithm.