945 resultados para Insulin-receptor Substrate-2


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Insulin and the inhibition of the reninangiotensin system have independent benefits for ischemiareperfusion injury, but their combination has not been tested. Our aim was to evaluate the effects of insulin+captopril on insulin/angiotensin signaling pathways and cardiac function in the isolated heart subjected to ischemiareperfusion. Isolated hearts were perfused (Langendorff technique) with KrebsHenseleit (KH) buffer for 25 min. Global ischemia was induced (20 min), followed by reperfusion (30 min) with KH (group KH), KH+angiotensin-I (group A), KH+angiotensin-I+captopril (group AC), KH+insulin (group I), KH+insulin+angiotensin-I (group IA), or KH+insulin+angiotensin-I+captopril (group IAC). Group A had a 24% reduction in developed pressure and an increase in end-diastolic pressure vs. baseline, effects that were reverted in groups AC, IA, and IAC. The phosphorylation of protein kinase B (AKT) was higher in groups I and IA vs. groups KH and A. The phosphorylation of AMP-activated protein kinase (AMPK) was similar to 31% higher in groups I, IA, and IAC vs. groups KH, A, and AC. The tert-butyl hydroperoxide (tBOOH)-induced chemiluminescence was lower (similar to 2.2 times) in all groups vs. group KH and was similar to 35% lower in group IA vs. group A. Superoxide dismutase content was lower in groups A, AC, and IAC vs. group KH. Catalase activity was similar to 28% lower in all groups (except group IA) vs. group KH. During reperfusion of the ischemic heart, insulin activates the AKT and AMPK pathways and inhibits the deleterious effects of angiotensin-I perfusion on SOD expression and cardiac function. The addition of captopril does not potentiate these effects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nucleus tractus solitarii (NTS), located in the brainstem, is one of the main nuclei responsible for integrating different signals in order to originate a specific and orchestrated autonomic response. Antihypertensive drugs are well known to stimulate alpha(2)-adrenoceptor (alpha(2R)) in brainstem cardiovascular regions to induce reduction in blood pressure. Because alpha(2R) impairment is present in several models of hypertension, the aim of the present study was to investigate the distribution and density of alpha(2R) binding within the NTS of Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats during development (1,15,30 and 90 day-old) by an in vitro autoradiographical study. The NTS shows heterogeneous distribution of alpha(2R) in dorsomedial/dorsolateral, subpostremal and medial/intermediate subnuclei. Alpha(2R) increased from rostral to caudal dorsomedial/dorsolateral subnuclei in 30 and 90 day-old SHR but not in WKY. Alpha(2R) decreased from rostral to caudal subpostremal subnucleus in 15, 30 and 90 day-old SHR but not in WKY. Medial/intermediate subnuclei did not show any changes in alpha(2R) according to NTS levels. Furthermore, alpha(2R) are decreased in SHR as compared with WKY in all NTS subnuclei and in different ages. Surprisingly, alpha(2R) impairment was also found in pre-hypertensive stages, specifically in subpostremal subnucleus of 15 day-old rats. Finally, alpha(2R) decrease from 1 to 90 day-old rats in all subnuclei analyzed. This decrease is different between strains in rostral dorsomedial/dorsolateral and caudal subpostremal subnuclei within the NTS. In summary, our results highlight the importance of alpha(2R) distribution within the NTS regarding the neural control of blood pressure and the development of hypertension. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: The aim of this study was to characterize the formation and progression of experimentally induced periapical lesions in TLR2 knockout (TLR2 KO) mice. Methods: Periapical lesions were induced in molars of 28 wild type (WT) and 27 TLR2 KO mice. After 7, 21, and 42 days, the animals were euthanized, and the mandibles were subjected to histotechnical processing. Hematoxylin-eosin-stained sections were examined under conventional light microscopy for the description of pulpal, apical, and periapical features and under fluorescence microscopy for the determination of the periapical lesion size. The subsequent sections were evaluated by tartrate resistant acid phosphatase histoenzymology (osteoclasts), Brown and Brenn staining (bacteria), and immunohistochemistry (RANK, RANKL, and OPG). Data were analyzed by the Mann-Whitney U and Kruskal-Wallis tests (alpha = 0.05), Results: The WT group showed significant differences (P < .05) in the periapical lesion size and the osteoclast number between 7 and 42 days and between 21 and 42 days. In the TLR2 KO group, significant differences (P < .05) in the periapical lesion size and the osteoclast number were found between 7 days and the other periods. There was a significant difference (P < .05) between the 2 types of animal regarding the periapical lesion size, which was larger in the TLR2 KO animals. No significant differences (P > .05) were found between WT and TLR2 KO mice related to the pulpal, apical, and periapical features; bacteria localization; and immunohistochemical results (except for RANK expression). Conclusions: TLR2 KO animals developed larger periapical lesions with a greater number of osteoclasts, indicating the important role of this receptor in the host's immune and inflammatory response to root canal and periradicular infection. (J Endod 2012;38:803-813)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To evaluate the effect of vitamin D-3 on cytokine levels, regulatory T cells, and residual beta-cell function decline when cholecalciferol (vitamin D-3 administered therapeutically) is given as adjunctive therapy with insulin in new-onset type 1 diabetes mellitus (T1DM). Design and Setting: An 18-month (March 10, 2006, to October 28, 2010) randomized, double-blind, placebo-controlled trial was conducted at the Diabetes Center of Sao Paulo Federal University, Sao Paulo, Brazil. Participants: Thirty-eight patients with new-onset T1DM with fasting serum C-peptide levels greater than or equal to 0.6 ng/mL were randomly assigned to receive daily oral therapy of cholecalciferol, 2000 IU, or placebo. Main Outcome Measure: Levels of proinflammatory and anti-inflammatory cytokines, chemokines, regulatory T cells, hemoglobin A(1c), and C-peptide; body mass index; and insulin daily dose. Results: Mean (SD) chemokine ligand 2 (monocyte chemoattractant protein 1) levels were significantly higher (184.6 [101.1] vs 121.4 [55.8] pg/mL) at 12 months, as well as the increase in regulatory T-cell percentage (4.55%[1.5%] vs 3.34%[1.8%]) with cholecalciferol vs placebo. The cumulative incidence of progression to undetectable (<= 0.1 ng/mL) fasting C-peptide reached 18.7% in the cholecalciferol group and 62.5% in the placebo group; stimulated C-peptide reached 6.2% in the cholecalciferol group and 37.5% in the placebo group at 18 months. Body mass index, hemoglobin A(1c) level, and insulin requirements were similar between the 2 groups. Conclusions: Cholecalciferol used as adjunctive therapy with insulin is safe and associated with a protective immunologic effect and slow decline of residual beta-cell function in patients with new-onset T1DM. Cholecalciferol may be an interesting adjuvant in T1DM prevention trials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Arthritic pain is a serious health problem that affects a large number of patients. Toll-like receptors (TLRs) activation within the joints has been implicated in pathophysiology of arthritis. However, their role in the genesis of arthritic pain needs to be demonstrated. In the present study, it was addressed the participation of TLR2 and TLR4 and their adaptor molecule MyD88 in the genesis of joint hypernociception (a decrease in the nociceptive threshold) during zymosan-induced arthritis. Zymosan injected in the tibio-tarsal joint induced mechanical hypernociception in C57BL/6 wild type mice that was reduced in TLR2 and MyD88 null mice. On the other hand, zymosan-induced hypernociception was similar in C3H/HePas and C3H/Hej mice (TLR4 mutant mice). Zymosan-induced joint hypernociception was also reduced in TNFR1 null mice and in mice treated with IL-1 receptor antagonist or with an antagonist of CXCR1/2. Moreover, the joint production of TNF-alpha, IL-1 beta and CXCL1/KC by zymosan was dependent on TLR2/MyD88 signaling. Investigating the mechanisms by which TNF-alpha, IL-1 beta and CXCL1/KC mediate joint hypernociception, joint administration of these cytokines produced mechanical hypernociception, and they act in an interdependent manner. In last instance, their hypernociceptive effects were dependent on the production of hypernociceptive mediators, prostaglandins and sympathetic amines. These results indicate that in zymosan-induced experimental arthritis, TLR2/MyD88 is involved in the cascade of events of joint hypernociception through a mechanism dependent on cytokines and chemokines production. Thus, TLR2/MyD88 signaling might be a target for the development of novel drugs to control pain in arthritis. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective Growth hormone (GH)/insulin-like growth factor (IGF) axis and insulin are key determinants of bone remodelling. Homozygous mutations in the GH-releasing hormone receptor (GHRHR) gene (GHRHR) are a frequent cause of genetic isolated GH deficiency (IGHD). Heterozygosity for GHRHR mutation causes changes in body composition and possibly an increase in insulin sensitivity, but its effects on bone quality are still unknown. The objective of this study was to assess the bone quality and metabolism and its correlation with insulin sensitivity in subjects heterozygous for a null mutation in the GHRHR. Patients and methods A cross-sectional study was performed on 76 normal subjects (68.4% females) (N/N) and 64 individuals (64.1% females) heterozygous for a mutation in the GHRHR (MUT/N). Anthropometric features, quantitative ultrasound (QUS) of the heel, bone markers [osteocalcin (OC) and CrossLaps], IGF-I, glucose and insulin were measured, and homeostasis model assessment of insulin resistance (HOMAIR) was calculated. Results There were no differences in age or height between the two groups, but weight (P = 0.007) and BMI (P = 0.001) were lower in MUT/N. There were no differences in serum levels of IGF-I, glucose, T-score or absolute values of stiffness and OC, but insulin (P = 0.01), HOMAIR (P = 0.01) and CrossLaps (P = 0.01) were lower in MUT/N. There was no correlation between OC and glucose, OC and HOMAIR in the 140 individuals as a whole or in the separate MUT/N or N/N groups. Conclusions This study suggests that one allele mutation in the GHRHR gene has a greater impact on energy metabolism than on bone quality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE To assess the effects of atorvastatin (ATORV) on renal function after bilateral ureteral obstruction (BUO), measuring inulin clearance and its effect on renal hemodynamic, filtration, and inflammatory response, as well as the expression of Aquaporin-2 (AQP2) in response to BUO and after the release of BUO. METHODS Adult Munich-Wistar male rats were subjected to BUO for 24 hours and monitored during the following 48 hours. Rats were divided into 5 groups: sham operated (n = 6); sham + ATORV (n = 6); BUO (n = 6); BUO + ATORV (10 mg/kg in drinking water started 2 days before BUO [n = 5]; and BUO + ATORV (10 mg/kg in drinking water started on the day of the release of BUO [n = 5]). We measured blood pressure (BP, mm Hg); inulin clearance (glomerular filtration rate [GFR]; mL/min/100 g); and renal blood flow (RBF, mL/min, by transient-time flowmeter). Inflammatory response was evaluated by histologic analysis of the interstitial area. AQP2 expression was evaluated by electrophoresis and immunoblotting. RESULTS Renal function was preserved by ATORV treatment, even if initiated on the day of obstruction release, as expressed by GFR, measured by inulin clearance. Relative interstitial area was decreased in both BUO + ATORV groups. Urine osmolality was improved in the ATORV-treated groups. AQP2 protein expression decreased in BUO animals and was reverted by ATORV treatment. CONCLUSION ATORV administration significantly prevented and restored impairment in GFR and renal vascular resistance. Furthermore, ATORV also improved urinary concentration by reversing the BUO-induced downregulation of AQP2. These findings have significant clinical implication in treating obstructive nephropathy. UROLOGY 80: 485.e15-485.e20, 2012. (c) 2012 Elsevier Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Background The Vitamin D Receptor gene (VDR) is expressed in many tissues and modulates the expression of several other genes. The purpose of this study was to investigate the association between metabolic syndrome (MetSyn) with the presence of VDR 2228570 C > T and VDR 1544410 A > G polymorphisms in Brazilian adults. Methods Two hundred forty three (243) individuals were included in a cross-sectional study. MetSyn was classified using the criteria proposed by National Cholesterol Educational Program - Adult Treatment Panel III. Insulin resistance and β cell secretion were estimated by the mathematical models of HOMA IR and β, respectively. The VDR 2228570 C > T and VDR 1544410 A > G polymorphisms were detected by enzymatic digestion and confirmed by allele specific PCR or amplification of refractory mutation. Results Individuals with MetSyn and heterozygosis for VDR 2228570 C > T have higher concentrations of iPTH and HOMA β than those without this polymorphism, and subjects with recessive homozygosis for the same polymorphisms presented higher insulin resistance than those with the heterozygous genotype. There is no association among VDR 1544410 A > G and components of MetSyn, HOMA IR and β, serum vitamin D (25(OH)D3) and intact parathormone (iPTH) levels in patients with MetSyn. A significant lower concentration of 25(OH)D3 was observed only in individuals without MetSyn in the VDR 1544410 A > G genotype. Additionally, individuals without MetSyn and heterozygosis for VDR 2228570 C > T presented higher concentration of triglycerides and lower HDL than those without this polymorphism. Conclusions Using two common VDR polymorphism data suggests they may influence insulin secretion, insulin resistance an serum HDL-cholesterol in our highly heterogeneous population. Whether VDR polymorphism may influence the severity of MetSyn component disorder, warrants examination in larger cohorts used for genome-wide association studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Fibroblasts are now seen as active components of the immune response because these cells express Toll-like receptors (TLRs), recognize pathogen-associated molecular patterns, and mediate the production of cytokines and chemokines during inflammation. The innate host response to lipopolysaccharide (LPS) from Porphyromonas gingivalis is unusual inasmuch as different studies have reported that it can be an agonist for Toll-like receptor 2 (TLR2) and an antagonist or agonist for Toll-like receptor 4 (TLR4). This study investigates and compares whether signaling through TLR2 or TLR4 could affect the secretion of interleukin (IL)-6, IL-8, and stromal derived factor-1 (SDF-1/CXCL12) in both human gingival fibroblasts (HGF) and human periodontal ligament fibroblasts (HPDLF). Methods: After small interfering RNA-mediated silencing of TLR2 and TLR4, HGF and HPDLF from the same donors were stimulated with P. gingivalis LPS or with two synthetic ligands of TLR2, Pam2CSK4 and Pam3CSK4, for 6 hours. IL-6, IL-8, and CXCL12 mRNA expression and protein secretion were evaluated by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Results: TLR2 mRNA expression was upregulated in HGF but not in HPDLF by all the stimuli applied. Knockdown of TLR2 decreased IL-6 and IL-8 in response to P. gingivalis LPS, or Pam2CSK4 and Pam3CSK4, in a similar manner in both fibroblasts subpopulations. Conversely, CXCL12 remained unchanged by TLR2 or TLR4 silencing. Conclusion: These results suggest that signaling through TLR2 by gingival and periodontal ligament fibroblasts can control the secretion of IL-6 and IL-8, which contribute to periodontal pathogenesis, but do not interfere with CXCL12 levels, an important chemokine in the repair process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Thyroid hormone induces cardiac hypertrophy and preconditions the myocardium against Ischemia/Reperfusion (I/R) injury. Type 2 Angiotensin II receptors (AT2R) are shown to be upregulated in cardiac hypertrophy observed in hyperthyroidism and this receptor has been reported to mediate cardioprotection against ischemic injury. Methods The aim of the present study was to evaluate the role of AT2R in the recovery of myocardium after I/R in isolated hearts from T3 treated rats. MaleWistar rats were treated with triiodothyronine (T3; 7 μg/100 gBW/day, i.p.) in the presence or not of a specific AT2R blocker (PD123,319; 10 mg/Kg) for 14 days, while normal rats served as control. After treatment, isolated hearts were perfused in Langendorff mode; after 30 min of stabilization, hearts were subjected to 20 min of zero-flow global ischemia followed by 25 min, 35 min and 45 min of reperfusion. Results T3 treatment induced cardiac hypertrophy, which was not changed by PD treatment. Post-ischemic recovery of cardiac function was increased in T3-treated hearts after 35 min and 45 min of reperfusion as compared to control and the ischemic contracture was accelerated and intensified. AT2R blockade was able to return the evaluated functional parameters of cardiac performance (LVDP, +dP/dtmáx and −dP/dtmin) to the control condition. Furthermore, AT2R blockade prevented the increase in AMPK expression levels induced by T3, suggesting its possible involvement in this process. Conclusion AT2R plays a significant role in T3-induced cardioprotection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Protease-activated receptor 2 (PAR2) is implicated in the pathogenesis of chronic inflammatory diseases, including periodontitis; it can be activated by gingipain and produced by Porphyromonas gingivalis and by neutrophil protease 3 (P3). PAR2 activation plays a relevant role in inflammatory processes by inducing the release of important inflammatory mediators associated with periodontal breakdown. The effects of periodontal treatment on PAR2 expression and its association with levels of proinflammatory mediators and activating proteases were investigated in chronic periodontitis patients. Positive staining for PAR2 was observed in gingival crevicular fluid cells and was reflective of tissue destruction. Overexpression of PAR2 was positively associated with inflammatory clinical parameters and with the levels of interleukin-6 (IL-6), IL-8, tumor necrosis factor alpha, matrix metalloprotease 2 (MMP-2), MMP-8, hepatocyte growth factor, and vascular endothelial growth factor. Elevated levels of gingipain and P3 and decreased levels of dentilisin and the protease inhibitors secretory leukocyte protease inhibitor and elafin were also associated with PAR2 overexpression. Healthy periodontal sites from individuals with chronic periodontitis showed diminished expression of PAR2 mRNA and the PAR2 protein (P < 0.05). Furthermore, periodontal treatment resulted in decreased PAR2 expression and correlated with decreased expression of inflammatory mediators and activating proteases. We concluded that periodontal treatment resulted in decreased levels of proteases and that proinflammatory mediators are associated with decreased PAR2 expression, suggesting that PAR2 expression is influenced by the presence of periodontal infection and is not a constitutive characteristic favoring periodontal inflammation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hyperthyroidism is characterized by increased vascular relaxation and decreased vascular contraction and is associated with augmented levels of triiodothyronine (T3) that contribute to the diminished systemic vascular resistance found in this condition. T3 leads to augmented NO production via PI3K/Akt signaling pathway, which in turn causes vascular smooth muscle cell (VSMC) relaxation; however, the underlying mechanisms involved remain largely unknown. Evidence from human and animal studies demonstrates that the renin-angiotensin system (RAS) plays a crucial role in vascular function and also mediates some of cardiovascular effects found during hyperthyroidism. Thus, in this study, we hypothesized that type 2 angiotensin II receptor (AT2R), a key component of RAS vasodilatory actions, mediates T3 induced-decreased vascular contraction. Marked induction of AT2R expression was observed in aortas from T3-induced hyperthyroid rats (Hyper). These vessels showed decreased protein levels of the contractile apparatus: α-actin, calponin and phosphorylated myosin light chain (p-MLC). Vascular reactivity studies showed that denuded aortic rings from Hyper rats exhibited decreased maximal contractile response to angiotensin II (AngII), which was attenuated in aortic rings pre-incubated with an AT2R blocker. Further study showed that cultured VSMC stimulated with T3 (0.1 µmol/L) for 24 hours had increased AT2R gene and protein expression. Augmented NO levels and decreased p-MLC levels were found in VSMC stimulated with T3, both of which were reversed by a PI3K/Akt inhibitor and AT2R blocker. These findings indicate for the first time that the AT2R/Akt/NO pathway contributes to decreased contractile responses in rat aorta, promoted by T3, and this mechanism is independent from the endothelium.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Growth hormone insensitivity syndrome (GHIS) is a rare cause of growth retardation characterized by high serum GH levels, and low serum insulin-like growth factor I (IGF-I) levels associated with a genetic defect of the GH receptor (GHR) as well post-GHR signaling pathway. Based on clinical, as well as biochemical characteristics, GHIS can be genetically classified as classical/Laron's syndrome and nonclassical/atypical GHIS. Recombinant human IGF-I (rhIGF-I) treatment is effective in promoting growth in subjects who have GHIS. Further, pharmacological studies of a IGF-I compound containing a 1:1 molar complex of rhIGF-I and rhIGF-binding protein-3 (BP-3) demonstrated that the complex was effective in increasing levels of circulating total and free IGF-I and that the administration in patients with GHIS should be safe, well-tolerated and more effective than rhIGF-I on its own.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cannabinoid receptors CB1 and CB2 are expressed in the liver, but their regulation in fatty hepatocytes is poorly documented. The aim of this study was to investigate the effects of selective CB1 or CB2 agonists on the expression of key regulators of lipid metabolism.