991 resultados para Inspiratory resistive load testing
Resumo:
Tämä työ tehtiin globaaliin elektroniikka-alan yritykseen. Diplomityö liittyy haasteeseen, jonka lisääntynyt globalisaatio ja kiristyvä kilpailu ovat luoneet: case yrityksen on selvitettävä kuinka se voi saavuttaa kasvutavoitteet myös tulevaisuudessa hankkimalla uusia asiakkaita ja olemalla yhä enenevissä määrin maailmanlaajuisesti läsnä. Tutkimuksen tavoite oli löytää sopiva malli potentiaalisten avainasiakkaiden identifiointiin ja valintaan, sekä testata ja modifioida valittua mallia case yrityksen tarpeiden mukaisesti. Erityisesti raakadatan kerääminen, asiakkaiden houkuttelevuuskriteerit ja kohdemarkkinarako olivat asioita, jotka tarvitsivat tutkimuksessa huomiota. Kirjallisuuskatsauksessa keskityttiin yritysmarkkinoihin, eri asiakassuhteenhallinnan lähestymistapoihin ja avainasiakkaiden määrittämiseen. CRM:n, KAM:n ja Customer Insight-ajattelun perusteet esiteltiin yhdessä eri avainasiakkaiden identifiointimallien kanssa. Valittua Chevertonin mallia testattiin ja muokattiin työn empiirisessä osassa. Tutkimuksen empiirinen kontribuutio on modifioitu malli potentiaalisten avainasiakkaiden identifiointiin. Se auttaa päätöksentekijöitä etenemään systemaattisesti ja organisoidusti askel askeleelta kohti potentiaalisten asiakkaiden listaa tietyltä markkina-alueelta. Työ tarjoaa työkalun tähän prosessiin sekä luo pohjaa tulevaisuuden tutkimukselle ja toimenpiteille.
Resumo:
GNbAC1 is a humanized monoclonal antibody targeting MSRV-Env, an endogenous retroviral protein, which is expressed in multiple sclerosis (MS) lesions, is pro-inflammatory and inhibits oligodendrocyte precursor cell differentiation. This paper describes the open-label extension up to 12months of a trial testing GNbAC1 in 10 MS patients at 2 and 6mg/kg. The primary objective was to assess GNbAC1 safety, and other objectives were pharmacokinetic and pharmacodynamic assessments. During the extended study, no safety issues occurred in the 8 remaining patients. No anti-GNbAC1 antibodies were detected. GNbAC1 appears well tolerated.
Resumo:
Industry's growing need for higher productivity is placing new demands on mechanisms connected with electrical motors, because these can easily lead to vibration problems due to fast dynamics. Furthermore, the nonlinear effects caused by a motor frequently reduce servo stability, which diminishes the controller's ability to predict and maintain speed. Hence, the flexibility of a mechanism and its control has become an important area of research. The basic approach in control system engineering is to assume that the mechanism connected to a motor is rigid, so that vibrations in the tool mechanism, reel, gripper or any apparatus connected to the motor are not taken into account. This might reduce the ability of the machine system to carry out its assignment and shorten the lifetime of the equipment. Nonetheless, it is usually more important to know how the mechanism, or in other words the load on the motor, behaves. A nonlinear load control method for a permanent magnet linear synchronous motor is developed and implemented in the thesis. The purpose of the controller is to track a flexible load to the desired velocity reference as fast as possible and without awkward oscillations. The control method is based on an adaptive backstepping algorithm with its stability ensured by the Lyapunov stability theorem. As a reference controller for the backstepping method, a hybrid neural controller is introduced in which the linear motor itself is controlled by a conventional PI velocity controller and the vibration of the associated flexible mechanism is suppressed from an outer control loop using a compensation signal from a multilayer perceptron network. To avoid the local minimum problem entailed in neural networks, the initial weights are searched for offline by means of a differential evolution algorithm. The states of a mechanical system for controllers are estimated using the Kalman filter. The theoretical results obtained from the control design are validated with the lumped mass model for a mechanism. Generalization of the mechanism allows the methods derived here to be widely implemented in machine automation. The control algorithms are first designed in a specially introduced nonlinear simulation model and then implemented in the physical linear motor using a DSP (Digital Signal Processor) application. The measurements prove that both controllers are capable of suppressing vibration, but that the backstepping method is superior to others due to its accuracy of response and stability properties.
Resumo:
This paper contains a joint ESHG/ASHG position document with recommendations regarding responsible innovation in prenatal screening with non-invasive prenatal testing (NIPT). By virtue of its greater accuracy and safety with respect to prenatal screening for common autosomal aneuploidies, NIPT has the potential of helping the practice better achieve its aim of facilitating autonomous reproductive choices, provided that balanced pretest information and non-directive counseling are available as part of the screening offer. Depending on the health-care setting, different scenarios for NIPT-based screening for common autosomal aneuploidies are possible. The trade-offs involved in these scenarios should be assessed in light of the aim of screening, the balance of benefits and burdens for pregnant women and their partners and considerations of cost-effectiveness and justice. With improving screening technologies and decreasing costs of sequencing and analysis, it will become possible in the near future to significantly expand the scope of prenatal screening beyond common autosomal aneuploidies. Commercial providers have already begun expanding their tests to include sex-chromosomal abnormalities and microdeletions. However, multiple false positives may undermine the main achievement of NIPT in the context of prenatal screening: the significant reduction of the invasive testing rate. This document argues for a cautious expansion of the scope of prenatal screening to serious congenital and childhood disorders, only following sound validation studies and a comprehensive evaluation of all relevant aspects. A further core message of this document is that in countries where prenatal screening is offered as a public health programme, governments and public health authorities should adopt an active role to ensure the responsible innovation of prenatal screening on the basis of ethical principles. Crucial elements are the quality of the screening process as a whole (including non-laboratory aspects such as information and counseling), education of professionals, systematic evaluation of all aspects of prenatal screening, development of better evaluation tools in the light of the aim of the practice, accountability to all stakeholders including children born from screened pregnancies and persons living with the conditions targeted in prenatal screening and promotion of equity of access.
Resumo:
In the present work we focus on two indices that quantify directionality and skew-symmetrical patterns in social interactions as measures of social reciprocity: the Directional consistency (DC) and Skew symmetry indices. Although both indices enable researchers to describe social groups, most studies require statistical inferential tests. The main aims of the present study are: firstly, to propose an overall statistical technique for testing null hypotheses regarding social reciprocity in behavioral studies, using the DC and Skew symmetry statistics (Φ) at group level; and secondly, to compare both statistics in order to allow researchers to choose the optimal measure depending on the conditions. In order to allow researchers to make statistical decisions, statistical significance for both statistics has been estimated by means of a Monte Carlo simulation. Furthermore, this study will enable researchers to choose the optimal observational conditions for carrying out their research, as the power of the statistical tests has been estimated.
Resumo:
Finding out whether Plasmodium spp. are coevolving with their vertebrate hosts is of both theoretical and applied interest and can influence our understanding of the effects and dynamics of malaria infection. In this study, we tested for local adaptation as a signature of coevolution between malaria blood parasites, Plasmodium spp. and its host, the great tit, Parus major. We conducted a reciprocal transplant experiment of birds in the field, where we exposed birds from two populations to Plasmodium parasites. This experimental set-up also provided a unique opportunity to study the natural history of malaria infection in the wild and to assess the effects of primary malaria infection on juvenile birds. We present three main findings: i) there was no support for local adaptation; ii) there was a male-biased infection rate; iii) infection occurred towards the end of the summer and differed between sites. There were also site-specific effects of malaria infection on the hosts. Taken together, we present one of the few experimental studies of parasite-host local adaptation in a natural malaria system, and our results shed light on the effects of avian malaria infection in the wild.
Resumo:
A major problem in developmental neurotoxicity (DNT) risk assessment is the lack of toxicological hazard information for most compounds. Therefore, new approaches are being considered to provide adequate experimental data that allow regulatory decisions. This process requires a matching of regulatory needs on the one hand and the opportunities provided by new test systems and methods on the other hand. Alignment of academically and industrially driven assay development with regulatory needs in the field of DNT is a core mission of the International STakeholder NETwork (ISTNET) in DNT testing. The first meeting of ISTNET was held in Zurich on 23-24 January 2014 in order to explore the concept of adverse outcome pathway (AOP) to practical DNT testing. AOPs were considered promising tools to promote test systems development according to regulatory needs. Moreover, the AOP concept was identified as an important guiding principle to assemble predictive integrated testing strategies (ITSs) for DNT. The recommendations on a road map towards AOP-based DNT testing is considered a stepwise approach, operating initially with incomplete AOPs for compound grouping, and focussing on key events of neurodevelopment. Next steps to be considered in follow-up activities are the use of case studies to further apply the AOP concept in regulatory DNT testing, making use of AOP intersections (common key events) for economic development of screening assays, and addressing the transition from qualitative descriptions to quantitative network modelling.
Resumo:
The effective notch stress approach for the fatigue strength assessment of welded structures as included in the Fatigue Design Recommendation of the IIW requires the numerical analysis of the elastic notch stress in the weld toe and weld root which is fictitiously rounded with a radius of 1mm. The goal of this thesis work was to consider alternate meshing strategies when using the effective notch stress approach to assess the fatigue strength of load carrying partial penetration fillet-welded cruciform joints. In order to establish guidelines for modeling the joint and evaluating the results, various two-dimensional (2D) finite element analyses were carried out by systematically varying the thickness of the plates, the weld throat thickness, the degree of bending, and the shape and location of the modeled effective notch. To extend the scope of this work, studies were also carried out on the influence of
Resumo:
Different types of aerosolization and deagglomeration testing systems exist for studying the properties of nanomaterial powders and their aerosols. However, results are dependent on the specific methods used. In order to have well-characterized aerosols, we require a better understanding of how system parameters and testing conditions influence the properties of the aerosols generated. In the present study, four experimental setups delivering different aerosolization energies were used to test the resultant aerosols of two distinct nanomaterials (hydrophobic and hydrophilic TiO2). The reproducibility of results within each system was good. However, the number concentrations and size distributions of the aerosols created varied across the four systems; for number concentrations, e.g., from 10(3) to 10(6) #/cm(3). Moreover, distinct differences were also observed between the two materials with different surface coatings. The article discusses how system characteristics and other pertinent conditions modify the test results. We propose using air velocity as a suitable proxy for estimating energy input levels in aerosolization systems. The information derived from this work will be especially useful for establishing standard operating procedures for testing nanopowders, as well as for estimating their release rates under different energy input conditions, which is relevant for occupational exposure.
Resumo:
Many people regard the concept of hypothesis testing as fundamental to inferential statistics. Various schools of thought, in particular frequentist and Bayesian, have promoted radically different solutions for taking a decision about the plausibility of competing hypotheses. Comprehensive philosophical comparisons about their advantages and drawbacks are widely available and continue to span over large debates in the literature. More recently, controversial discussion was initiated by an editorial decision of a scientific journal [1] to refuse any paper submitted for publication containing null hypothesis testing procedures. Since the large majority of papers published in forensic journals propose the evaluation of statistical evidence based on the so called p-values, it is of interest to expose the discussion of this journal's decision within the forensic science community. This paper aims to provide forensic science researchers with a primer on the main concepts and their implications for making informed methodological choices.
Resumo:
Invasive mold infections are life-threatening diseases for which appropriate antifungal therapy is crucial. Their epidemiology is evolving, with the emergence of triazole-resistant Aspergillus spp. and multidrug-resistant non-Aspergillus molds. Despite the lack of interpretive criteria, antifungal susceptibility testing of molds may be useful in guiding antifungal therapy. The standard broth microdilution method (BMD) is demanding and requires expertise. We assessed the performance of a commercialized gradient diffusion method (Etest method) as an alternative to BMD. The MICs or minimal effective concentrations (MECs) of amphotericin B, voriconazole, posaconazole, caspofungin, and micafungin were assessed for 290 clinical isolates of the most representative pathogenic molds (154 Aspergillus and 136 non-Aspergillus isolates) with the BMD and Etest methods. Essential agreements (EAs) within ±2 dilutions of ≥90% between the two methods were considered acceptable. EAs for amphotericin B and voriconazole were >90% for most potentially susceptible species. For posaconazole, the correlation was acceptable for Mucoromycotina but Etest MIC values were consistently lower for Aspergillus spp. (EAs of <90%). Excellent EAs were found for echinocandins with highly susceptible (MECs of <0.015 μg/ml) or intrinsically resistant (MECs of >16 μg/ml) strains. However, MEC determinations lacked consistency between methods for strains exhibiting mid-range MECs for echinocandins. We concluded that the Etest method is an appropriate alternative to BMD for antifungal susceptibility testing of molds under specific circumstances, including testing with amphotericin B or triazoles for non-Aspergillus molds (Mucoromycotina and Fusarium spp.). Additional study of molecularly characterized triazole-resistant Aspergillus isolates is required to confirm the ability of the Etest method to detect voriconazole and posaconazole resistance among Aspergillus spp.
Resumo:
Vaccination aims at generating memory immune responses able to protect individuals against pathogenic challenges over long periods of time. Subunit vaccine formulations based on safe, but poorly immunogenic, antigenic entities must be combined with adjuvant molecules to make them efficient against infections. We have previously shown that gas-filled microbubbles (MB) are potent antigen-delivery systems. This study compares the ability of various ovalbumin-associated MB (OVA-MB) formulations to induce antigen-specific memory immune responses and evaluates long-term protection toward bacterial infections. When initially testing dendritic cells reactivity to MB constituents, palmitic acid exhibited the highest degree of activation. Subcutaneous immunization of naïve wild-type mice with the OVA-MB formulation comprising the highest palmitic acid content and devoid of PEG2000 was found to trigger the more pronounced Th1-type response, as reflected by robust IFN-γ and IL-2 production. Both T cell and antibody responses persisted for at least 6 months after immunization. At that time, systemic infection with OVA-expressing Listeria monocytgenes was performed. Partial protection of vaccinated mice was demonstrated by reduction of the bacterial load in both the spleen and liver. We conclude that antigen-bound MB exhibit promising properties as a vaccine candidate ensuring prolonged maintenance of protective immunity.