983 resultados para Infrared thermal imagery
Resumo:
Complexes of Ni(II) 2,3-, 3,5- and 2,6-dimethoxybenzoates have been synthesized, their physico-chemical properties have been compared and the influence of the position of -OCH3 substituent on their properties investigated. The analysed compounds are crystalline, hydrated salts with green colour. The carboxylate ions show a bidentate chelating or bridging coordination modes. The thermal stabilities of Ni(II) dimethoxybenzoates were investigated in air in the range of 293-1173 K. The complexes decompose in three steps, yelding the NiO as the final product of decomposition. Their solubilities in water at 293 K are in the order of 10-2-10-4 mol×dm-3. The magnetic susceptibilities for the analysed dimethoxybenzoates of Ni(II) were measured over the range of 76-303 K and the magnetic moments were calculated. The results reveal that the complexes are the high-spin ones and the ligands form the weak electrostatic field in the octahedral coordination sphere of the central Ni(II) ion. The various position -OCH3 groups in benzene ring cause the different steric, mesomeric and inductive effects on the electron density in benzene ring.
Resumo:
Physico-chemical properties of 3-chloro-2-nitrobenzoates of Co(II), Ni(II) and Cu(II) were synthesized and studied. The complexes were obtained as mono- and dihydrates with a metal ion to ligand ratio of 1 : 2. All analysed 3-chloro-2-nitrobenzoates are polycrystalline compounds with colours depending on the central ions: pink for Co(II), green for Ni(II) and blue for Cu(II) complexes. Their thermal decomposition was studied in the range of 293 523 K, because it was found that on heating in air above 523 K 3-chloro-2-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step and anhydrous compounds are formed. The final products of their decomposition are the oxides of the respective transition metals. From the results it appears that during dehydration process no transformation of nitro group to nitrite takes place. The solubilities of analysed complexes in water at 293 K are of the order of 10-4 10-2 mol / dm³. The magnetic moment values of Co2+, Ni2+ and Cu2+ ions in 3-chloro-2-nitrobenzoates experimentally determined at 76 303 K change from 3.67µB to 4.61µB for Co(II) complex, from 2.15µB to 2.87µB for Ni(II) 3-chloro-2-nitrobenzoate and from 0.26µB to 1.39µB for Cu(II) complex. 3-Chloro-2-nitrobenzoates of Co(II) and Ni(II) follow the Curie-Weiss law. Complex of Cu(II) forms dimer.
Resumo:
2,4 - Dimethoxybenzoates of Mn(II), Co(II) and Cu(II) have been synthesized as hydrated or anyhydrous polycrystalline solids and characterized by elemental analysis, IR spectroscopy, magnetic studies and X-ray diffraction measurements. They possess the following colours: Mn(II) - white, Co(II) - pink and Cu(II) - blue. The carboxylate groups bind as monodentate, or a symmetrical bidentate bridging ligands and tridentate. The thermal stabilities were determined in air at 293-1173K. When heated the hydrated complexes dehydrate to from anhydous salts which are decomposed to the oxides of respective metals. The magnetic susceptibilites of the 2,4-dimethoxybenzoates were measured over the range 76-303 K and their magnetic moments were calculated. The results reveal the complexes of Mn(II), Co(II) to be high-spin complexes and that of Cu(II) to form dimer.
Resumo:
Copolymers of methyl methacrylate (MMA) and triethyleneglycol dimethacrylate (TEGDMA) obtained by photoinitiated polymerization using Fe(III) complexes were submitted to thermogravimetry (TGA) under dynamic air atmosphere and N2, and differential scanning calorimetric analysis (DSC). Thermal events were observed only between 90 - 110 ºC. Glass transitions were observed at ca. 100 ºC, followed by an exothermic peak at 170 ºC. The exothermic peak was assigned to a thermal curing process due to the presence of unreacted vinyl groups of the monomers. DSC revealed to be a useful tool to evaluate the curing completeness in this kind of material, using small amounts of sample in relatively short time.
Thermal decomposition of solid state compounds of lanthanide and yttrium benzoates in CO2 atmosphere
Resumo:
Solid-state Ln-Bz compounds, where Ln stands for trivalent lanthanides and Bz is benzoate have been synthesized. Simultaneous thermogravimetric and differential thermal analysis in a CO2 atmosphere were used to study the thermal decomposition of these compounds.
Resumo:
The present study investigates the spatial and spectral discrimination potential for grassland patches in the inner Turku Archipelago using Landsat Thematic Mapper satellite imagery. The spatial discrimination potential was computed through overlay analysis using official grassland parcel data and a hypothetical 30 m resolution satellite image capturing the site. It found that Landsat TM imagery’s ability to retrieve pure or near-pure pixels (90% purity or more) from grassland patches smaller than 1 hectare was limited to 13% success, compared to 52% success when upscaling the resolution to 10 x 10 m pixel size. Additionally, the perimeter/area patch metric is proposed as a predictor for the suitability of the spatial resolution of input imagery. Regression analysis showed that there is a strong negative correlation between a patch’s perimeter/area ratio and its pure pixel potential. The study goes on to characterise the spectral response and discrimination potential for the five main grassland types occurring in the study area: recreational grassland, traditional pasture, modern pasture, fodder production grassland and overgrown grassland. This was done through the construction of spectral response curves, a coincident spectral plot and a contingency matrix as well as by calculating the transformed divergence for the spectral signatures, all based on training samples from the TM imagery. Substantial differences in spectral discrimination potential between imagery from the beginning of the growing season and the middle of summer were found. This is because the spectral responses for these five grassland types converge as the peak of the growing season draws nearer. Recreational grassland shows a consistent discrimination advantage over other grassland types, whereas modern pasture is most easily confused. Traditional pasture land, perhaps the most biologically valuable grassland type, can be spectrally discriminated from other grassland types with satisfactory success rates provided early growing season imagery is used.
Resumo:
One filler often utilized in flexible polyurethane foams is calcium carbonate (CaCO3) because it is non-abrasiveness, non-toxicity and facilitated pigmentation. However, it is observed that the excess of commercial CaCO3 utilized in industry possibly causing permanent deformations and damaging the quality of the final product. The effect of different concentrations of commercial CaCO3, in flexible foams, was studied. Different concentrations of CaCO3 were used for the synthesis of flexible polyurethane foams, which were submitted to morphological and thermal analyses to verify the alterations provoked by the progressive introduction of this filler.
Resumo:
Unprocessed native starches are structurally too weak and functionally too restricted for application in today's advanced food technologies. Processing is necessary to engender a range of functionality. Naturals or natives starches can be modified by using several methods physical, chemical, enzymatic or combined, according industrial purposes. In this work, native corn starch was hydrolyzed by hydrochloric acid solution and investigated by using thermoanalytical techniques (thermogravimetry - TG, differential thermal analysis - DTA and differential scanning calorimetry - DSC), as well as optical microscopy and X-ray diffractometry. After acid treatment at 30 and 50°C, a decrease of gelatinization enthalpy (ΔHgel) was verified. Optical microscopy and X-ray diffractometry allowed us to verify the granules contorn and rugosity typical of cereal starches.
Resumo:
The Co(II), Ni(II) and Cu(II) metal ions complexes of Bis(4-amino-5-mercapto-1,2,4-triazol-3-yl) alkanes (BATs) have been prepared and characterized by elemental analysis, conductivity measurements infrared, magnetic susceptibility, the electronic spectral data and thermal studies. Based on spectral and magnetic results, the ligands are tetradentate coordinating through the N and S-atoms of BATs; six-coordinated octahedral or distorted octahedral and some times four-coordinated square planar were proposed for these complexes. Activation energies computed for the thermal decomposition steps were compared. The ligands and their metal complexes were tested in vitro for their biological effects. Their activities against two gram-positive, two gram-negative bacteria and two fungal species were found to vary from moderate to very strong.
Resumo:
The complexes of silver(I) with 2,3-, 2,4-, 2,6-, 3,4-, 3,5-dimethoxy-, and 2,3,4- and 3,4,5-trimethoxybenzoic acid anions have been synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric and X-ray studies. Their solubility in water has been also determined at 293K. All analysed complexes were found to be crystalline, anhydrous compounds with low symmetry. The carboxylate groups act as bidentate or monodentate ligands. The thermal stability of compounds has been examined in air in temperature range of 293-1173K. The analysed complexes were found to be stable at room temperature and their solubilities in water at 293K to be in the order of 10-4 mol.dm-3.
Resumo:
Solid State M-2-MeO-CP compounds, where M stands for bivalent metals (Mn, Fe, Co, Ni, Cu and Zn) and 2-MeO-CP is 2-methoxycinnamylidenepyruvate, were synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), elemental analysis and complexometry were used to establish the stoichiometry and to study the thermal behaviour of these compounds in CO2 and N2 atmospheres. The results were consistent with the general formula: M(L)2∙H2O. In both atmospheres (CO2, N2) the thermal decomposition occurs in consecutive steps which are characteristic of each compound. For CO2 atmosphere the final residues were: Mn3O4, Fe3O4, Co3O4, NiO, Cu2O and ZnO, while under N2 atmosphere the thermal decomposition is still observed at 1000 º C.
Resumo:
Thermal stability and thermal decomposition of succinic acid, sodium succinate and its compounds with Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) were investigated employing simultaneous thermogravimetry and differential thermal analysis (TG-DTA) in nitrogen and carbon dioxide atmospheres and TG-FTIR in nitrogen atmosphere. On heating, in both atmospheres the succinic acid melt and evaporate, while for the sodium succinate the thermal decomposition occurs with the formation of sodium carbonate. For the transition metal succinates the final residue up to 1180 ºC in N2 atmosphere was a mixture of metal and metal oxide in no simple stoichiometric relation, except for Zn compound, where the residue was a small quantity of carbonaceous residue. For the CO2 atmosphere the final residue up to 980 ºC was: MnO, Fe3O4, CoO, ZnO and mixtures of Ni, NiO and Cu, Cu2O.
Resumo:
The paper industry is constantly looking for new ideas for improving paper products while competition and raw material prices are increasing. Many paper products are pigment coated. Coating layer is the top layer of paper, thus by modifying coating pigment also the paper itself can be altered and value added to the final product. In this thesis, synthesis of new plastic and hybrid pigments and their performance in paper and paperboard coating is reported. Two types of plastic pigments were studied: core-shell latexes and solid beads of maleimide copolymers. Core-shell latexes with partially crosslinked hydrophilic polymer core of poly(n-butyl acrylate-co-methacrylic acid) and a hard hydrophobic polystyrene shell were prepared to improve the optical properties of coated paper. In addition, the effect of different crosslinkers was analyzed and the best overall performance was achieved by the use of ethylene glycol dimethacrylate (EGDMA). Furthermore, the possibility to modify core-shell latex was investigated by introducing a new polymerizable optical brightening agent, 1-[(4-vinylphenoxy)methyl]-4-(2-henylethylenyl)benzene which gave promising results. The prepared core-shell latex pigments performed smoothly also in pilot coating and printing trials. The results demonstrated that by optimizing polymer composition, the optical and surface properties of coated paper can be significantly enhanced. The optimal reaction conditions were established for thermal imidization of poly(styrene-co-maleimide) (SMI) and poly(octadecene-co-maleimide) (OMI) from respective maleic anhydride copolymer precursors and ammonia in a solvent free process. The obtained aqueous dispersions of nanoparticle copolymers exhibited glass transition temperatures (Tg) between 140-170ºC and particle sizes from 50-230 nm. Furthermore, the maleimide copolymers were evaluated in paperboard coating as additional pigments. The maleimide copolymer nanoparticles were partly imbedded into the porous coating structure and therefore the full potential of optical property enhancement for paperboard was not achieved by this method. The possibility to modify maleimide copolymers was also studied. Modifications were carried out via N-substitution by replacing part of the ammonia in the imidization reaction with amines, such as triacetonediamine (TAD), aspartic acid (ASP) and fluorinated amines (2,2,2- trifluoroethylamine, TFEA and 2,2,3,3,4,4,4-heptafluorobuthylamine, HFBA). The obtained functional nanoparticles varied in size between 50-217 nm and their Tg from 150-180ºC. During the coating process the produced plastic pigments exhibited good runnability. No significant improvements were achieved in light stability with TAD modified copolymers whereas nanoparticles modified with aspartic acid and those containing fluorinated groups showed the desired changes in surface properties of the coated paperboard. Finally, reports on preliminary studies with organic-inorganic hybrids are presented. The hybrids prepared by an in situ polymerization reaction consisted of 30 wt% poly(styrene- co-maleimide) (SMI) and high levels of 70 wt% inorganic components of kaolin and/or alumina trihydrate. Scanning Electron Microscopy (SEM) images and characterization by Fourier Transform Infrared Spcetroscopy (FTIR) and X-Ray Diffraction (XRD) revealed that the hybrids had conventional composite structure and inorganic components were covered with precipitated SMI nanoparticles attached to the surface via hydrogen bonding. In paper coating, the hybrids had a beneficial effect on increasing gloss levels.
Resumo:
ABSTRACT Inventory and prediction of cork harvest over time and space is important to forest managers who must plan and organize harvest logistics (transport, storage, etc.). Common field inventory methods including the stem density, diameter and height structure are costly and generally point (plot) based. Furthermore, the irregular horizontal structure of cork oak stands makes it difficult, if not impossible, to interpolate between points. We propose a new method to estimate cork production using digital multispectral aerial imagery. We study the spectral response of individual trees in visible and near infrared spectra and then correlate that response with cork production prior to harvest. We use ground measurements of individual trees production to evaluate the model’s predictive capacity. We propose 14 candidate variables to predict cork production based on crown size in combination with different NDVI index derivates. We use Akaike Information Criteria to choose the best among them. The best model is composed of combinations of different NDVI derivates that include red, green, and blue channels. The proposed model is 15% more accurate than a model that includes only a crown projection without any spectral information.
Resumo:
The objective of this work was to determine the effect of environmental variables and supplementation levels on physiological parameters of Moxotó goats in confined and semi-confined rising systems, in the Brazilian semi-arid region. The semi-confined individuals were kept on a grass based diet during the day and arrested in the end of the afternoon. The confined animals were kept in a management center, receiving two diets composed by forage cactus and maniçoba hay into two different levels (0.5 and 1.5% of the body weight). Inside the management center and in the external environment the environmental comfort parameters were set high during the afternoon period characterizing a situation of thermal discomfort for the animals. During the morning the semi-confined animals presented an average respiratory frequency (69.5 mov min-1) and rectal temperature (39.5 ºC) higher than the confined ones (62.6 mov min-1 and 39.0 ºC, respectively). The confined and semi-confined animals were able to maintain their rectal temperature within normal limits, with increase in the cardiac beatings rate and respiratory frequency. The greater percentage of the used supplementations (1.5%) seemed to increase rectal temperature in the two studied rising systems.