949 resultados para Information search – models
Resumo:
Along the west coast of the United States, the potential impact of increasing pinniped populations on declining salmonid (Oncorhynchus spp.) stocks has become an issue of concern. Fisheries managers need species-specific estimates of consumption by pinnipeds to evaluate their impact on salmonid stocks. To estimate consumption, we developed a model that estimates diet composition by reconstructing prey biomass from fecal samples. We applied the model to data collected from harbor seals (Phoca vitulina) that are present year-round in the lower Columbia River where endangered stocks of salmonids pass as returning adults and as seaward-migrating smolts. Using the same data, we applied the split-sample frequency of occurrence model, which avoids reconstructing biomass by assuming that each fecal sample represents an equal volume of consumption and that within each sample each prey item represents an equal proportion of the volume. The two models for estimating diet composition yielded size-specific differences in consumption estimates that were as large as tenfold for the smallest and largest prey. Conclusions about the impact of harbor seal predation on adult salmonids, some of their largest prey species, remain uncertain without some appropriate rationale or further information (e.g. empirical captive studies) to discriminate between these models.
Resumo:
This paper presents a new architecture which integrates recurrent input transformations (RIT) and continuous density HMMs. The basic HMM structure is extended to accommodate recurrent neural networks which transform the input observations before they enter the Gaussian output distributions associated with the states of the HMM. During training the parameters of both HMM and RIT are simultaneously optimized according to the Maximum Mutual Information (MMI) criterion. Results are presented for the E-set recognition task which demonstrate the ability of recurrent input transformations to exploit longer term correlations in the speech signal and to give improved discrimination.
Resumo:
Density modeling is notoriously difficult for high dimensional data. One approach to the problem is to search for a lower dimensional manifold which captures the main characteristics of the data. Recently, the Gaussian Process Latent Variable Model (GPLVM) has successfully been used to find low dimensional manifolds in a variety of complex data. The GPLVM consists of a set of points in a low dimensional latent space, and a stochastic map to the observed space. We show how it can be interpreted as a density model in the observed space. However, the GPLVM is not trained as a density model and therefore yields bad density estimates. We propose a new training strategy and obtain improved generalisation performance and better density estimates in comparative evaluations on several benchmark data sets. © 2010 Springer-Verlag.
Resumo:
This paper introduces current work in collating data from different projects using soil mix technology and establishing trends using artificial neural networks (ANNs). Variation in unconfined compressive strength as a function of selected soil mix variables (e.g., initial soil water content and binder dosage) is observed through the data compiled from completed and on-going soil mixing projects around the world. The potential and feasibility of ANNs in developing predictive models, which take into account a large number of variables, is discussed. The main objective of the work is the management and effective utilization of salient variables and the development of predictive models useful for soil mix technology design. Based on the observed success in the predictions made, this paper suggests that neural network analysis for the prediction of properties of soil mix systems is feasible. © ASCE 2011.
Resumo:
This paper investigates several approaches to bootstrapping a new spoken language understanding (SLU) component in a target language given a large dataset of semantically-annotated utterances in some other source language. The aim is to reduce the cost associated with porting a spoken dialogue system from one language to another by minimising the amount of data required in the target language. Since word-level semantic annotations are costly, Semantic Tuple Classifiers (STCs) are used in conjunction with statistical machine translation models both of which are trained from unaligned data to further reduce development time. The paper presents experiments in which a French SLU component in the tourist information domain is bootstrapped from English data. Results show that training STCs on automatically translated data produced the best performance for predicting the utterance's dialogue act type, however individual slot/value pairs are best predicted by training STCs on the source language and using them to decode translated utterances. © 2010 ISCA.
Resumo:
Forest mapping over mountainous terrains is difficult because of high relief Although digital elevation models (DEMs) are often useful to improve mapping accuracy, high quality DEMs are seldom available over large areas, especially in developing countries
Resumo:
Recent studies examining adaptation to unexpected changes in the mechanical environment highlight the use of position error in the adaptation process. However, force information is also available. In this chapter, we examine adaptation processes in three separate studies where the mechanical environment was changed intermittently. We compare the expected consequences of using position error and force information in the changes to motor commands following a change in the mechanical environment. In general, our results support the use of position error over force information and are consistent with current computational models of motor learning. However, in situations where the change in the mechanical environment eliminates position error the central nervous system does not necessarily respond as would be predicted by these models. We suggest that it is necessary to take into account the statistics of prior experience to account for our observations. Another deficiency in these models is the absence of a mechanism for modulating limb mechanical impedance during adaptation. We propose a relatively simple computational model based on reflex responses to perturbations which is capable of accounting for iterative changes in temporal patterns of muscle co-activation.
Resumo:
This paper presents the development of a new building physics and energy supply systems simulation platform. It has been adapted from both existing commercial models and empirical works, but designed to provide expedient exhaustive simulation of all salient types of energy- and carbon-reducing retrofit options. These options may include any combination of behavioural measures, building fabric and equipment upgrades, improved HVAC control strategies, or novel low-carbon energy supply technologies. We provide a methodological description of the proposed model, followed by two illustrative case studies of the tool when used to investigate retrofit options of a mixed-use office building and primary school in the UK. It is not the intention of this paper, nor would it be feasible, to provide a complete engineering decomposition of the proposed model, describing all calculation processes in detail. Instead, this paper concentrates on presenting the particular engineering aspects of the model which steer away from conventional practise. © 2011 Elsevier Ltd.
Resumo:
The University of Cambridge is unusual in that its Department of Engineering is a single department which covers virtually all branches of engineering under one roof. In their first two years of study, our undergrads study the full breadth of engineering topics and then have to choose a specialization area for the final two years of study. Here we describe part of a course, given towards the end of their second year, which is designed to entice these students to specialize in signal processing and information engineering topics for years 3 and 4. The course is based around a photo editor and an image search application, and it requires no prior knowledge of the z-transform or of 2-dimensional signal processing. It does assume some knowledge of 1-D convolution and basic Fourier methods and some prior exposure to Matlab. The subject of this paper, the photo editor, is written in standard Matlab m-files which are fully visible to the students and help them to see how specific algorithms are implemented in detail. © 2011 IEEE.
Resumo:
Most previous work on trainable language generation has focused on two paradigms: (a) using a statistical model to rank a set of generated utterances, or (b) using statistics to inform the generation decision process. Both approaches rely on the existence of a handcrafted generator, which limits their scalability to new domains. This paper presents BAGEL, a statistical language generator which uses dynamic Bayesian networks to learn from semantically-aligned data produced by 42 untrained annotators. A human evaluation shows that BAGEL can generate natural and informative utterances from unseen inputs in the information presentation domain. Additionally, generation performance on sparse datasets is improved significantly by using certainty-based active learning, yielding ratings close to the human gold standard with a fraction of the data. © 2010 Association for Computational Linguistics.
Resumo:
Several studies have highlighted the importance of information and information quality in organisations and thus information is regarded as key determinant for the success and organisational performance. In this paper, we review selected contributions and introduce a model that shows how IS/IT resources and capabilities could be interlinked with IS/IT utilization, organizational performance and business value. Complementing other models and frameworks, we explicitly consider information from a management maturity, quality and risk perspective and show how the new framework can be operationalized with existing assessment approaches by using empirical data from four industrial case studies. © 2012 Springer-Verlag.
Resumo:
Images represent a valuable source of information for the construction industry. Due to technological advancements in digital imaging, the increasing use of digital cameras is leading to an ever-increasing volume of images being stored in construction image databases and thus makes it hard for engineers to retrieve useful information from them. Content-Based Search Engines are tools that utilize the rich image content and apply pattern recognition methods in order to retrieve similar images. In this paper, we illustrate several project management tasks and show how Content-Based Search Engines can facilitate automatic retrieval, and indexing of construction images in image databases.
Resumo:
Several studies have highlighted the importance of information and information quality in organisations and thus information is regarded as key determinant for the success and organisational performance. At the same time, there are numerous studies, frameworks and case studies examining the impact of information technology and systems to business value. Recently, several studies have proposed maturity models for information management capabilities in the literature, which claim that a higher maturity results in a higher organizational performance. Although these studies provide valuable information about the underlying relations, most are limited in specifying the relationship in more detail. Furthermore, most prominent approaches do not or at least not explicitly consider information as important influencing factor for organisational performance. In this paper, we aim to review selected contributions and introduce a model that shows how IS/IT resources and capabilties could be interlinked with IS/IT utilization, organizational performance and business value. Complementing other models and frameworks, we explicitly consider information from a management maturity, quality and risk perspective. Moreover, the paper discusses how each part of the model can be assessed in order to validate the model in future studies.