920 resultados para Information Representation
Resumo:
Advances in information and communication technologies have brought about an information revolution, leading to fundamental changes in the way that information is collected or generated, shared and distributed. The importance of establishing systems in which research findings can be readily made available to and used by other researchers has long been recognized in international scientific collaborations. If the data access principles adopted by international scientific collaborations are to be effectively implemented they must be supported by the national policies and laws in place in the countries in which participating researchers are operating.
Resumo:
Much of our understanding of human thinking is based on probabilistic models. This innovative book by Jerome R. Busemeyer and Peter D. Bruza argues that, actually, the underlying mathematical structures from quantum theory provide a much better account of human thinking than traditional models. They introduce the foundations for modelling probabilistic-dynamic systems using two aspects of quantum theory. The first, "contextuality", is a way to understand interference effects found with inferences and decisions under conditions of uncertainty. The second, "entanglement", allows cognitive phenomena to be modelled in non-reductionist ways. Employing these principles drawn from quantum theory allows us to view human cognition and decision in a totally new light...
Resumo:
Contemporary mathematics education attempts to instil within learners the conceptualization of mathematics as a highly organized and inter-connected set of ideas. To support this, a means to graphically represent this organization of ideas is presented which reflects the cognitive mechanisms that shape a learner’s understanding. This organisation of information may then be analysed, with the view to informing the design of mathematics instruction in face-to-face and/or computer-mediated learning environments. However, this analysis requires significant work to develop both theory and practice.
Resumo:
This study examined the perceptual attunement of relatively skilled individuals to physical properties of striking implements in the sport of cricket. We also sought to assess whether utilising bats of different physical properties influenced performance of a specific striking action: the front foot straight drive. Eleven, skilled male cricketers (mean age = 16.6 ± 0.3 years) from an elite school cricket development programme consented to participate in the study. Whist blindfolded, participants wielded six bats exhibiting different mass and moment of inertia (MOI) characteristics and were asked to identify their three most preferred bats for hitting a ball to a maximum distance by performing a front foot straight drive (a common shot in cricket). Next, participants actually attempted to hit balls projected from a ball machine using each of the six bat configurations to enable kinematic analysis of front foot straight drive performance with each implement. Results revealed that, on first choice, the two bats with the smallest mass and MOI values (1 and 2) were most preferred by almost two-thirds (63.7%) of the participants. Kinematic analysis of movement patterns revealed that bat velocity, step length and bat-ball contact position measures significantly differed between bats. Data revealed how skilled youth cricketers were attuned to the different bat characteristics and harnessed movement system degeneracy to perform this complex interceptive action.
Resumo:
The representation of business process models has been a continuing research topic for many years now. However, many process model representations have not developed beyond minimally interactive 2D icon-based representations of directed graphs and networks, with little or no annotation for information over- lays. With the rise of desktop computers and commodity mobile devices capable of supporting rich interactive 3D environments, we believe that much of the research performed in computer human interaction, virtual reality, games and interactive entertainment has much potential in areas of BPM; to engage, pro- vide insight, and to promote collaboration amongst analysts and stakeholders alike. This initial visualization workshop seeks to initiate the development of a high quality international forum to present and discuss research in this field. Via this workshop, we intend to create a community to unify and nurture the development of process visualization topics as a continuing research area.
Resumo:
The most common software analysis tools available for measuring fluorescence images are for two-dimensional (2D) data that rely on manual settings for inclusion and exclusion of data points, and computer-aided pattern recognition to support the interpretation and findings of the analysis. It has become increasingly important to be able to measure fluorescence images constructed from three-dimensional (3D) datasets in order to be able to capture the complexity of cellular dynamics and understand the basis of cellular plasticity within biological systems. Sophisticated microscopy instruments have permitted the visualization of 3D fluorescence images through the acquisition of multispectral fluorescence images and powerful analytical software that reconstructs the images from confocal stacks that then provide a 3D representation of the collected 2D images. Advanced design-based stereology methods have progressed from the approximation and assumptions of the original model-based stereology(1) even in complex tissue sections(2). Despite these scientific advances in microscopy, a need remains for an automated analytic method that fully exploits the intrinsic 3D data to allow for the analysis and quantification of the complex changes in cell morphology, protein localization and receptor trafficking. Current techniques available to quantify fluorescence images include Meta-Morph (Molecular Devices, Sunnyvale, CA) and Image J (NIH) which provide manual analysis. Imaris (Andor Technology, Belfast, Northern Ireland) software provides the feature MeasurementPro, which allows the manual creation of measurement points that can be placed in a volume image or drawn on a series of 2D slices to create a 3D object. This method is useful for single-click point measurements to measure a line distance between two objects or to create a polygon that encloses a region of interest, but it is difficult to apply to complex cellular network structures. Filament Tracer (Andor) allows automatic detection of the 3D neuronal filament-like however, this module has been developed to measure defined structures such as neurons, which are comprised of dendrites, axons and spines (tree-like structure). This module has been ingeniously utilized to make morphological measurements to non-neuronal cells(3), however, the output data provide information of an extended cellular network by using a software that depends on a defined cell shape rather than being an amorphous-shaped cellular model. To overcome the issue of analyzing amorphous-shaped cells and making the software more suitable to a biological application, Imaris developed Imaris Cell. This was a scientific project with the Eidgenössische Technische Hochschule, which has been developed to calculate the relationship between cells and organelles. While the software enables the detection of biological constraints, by forcing one nucleus per cell and using cell membranes to segment cells, it cannot be utilized to analyze fluorescence data that are not continuous because ideally it builds cell surface without void spaces. To our knowledge, at present no user-modifiable automated approach that provides morphometric information from 3D fluorescence images has been developed that achieves cellular spatial information of an undefined shape (Figure 1). We have developed an analytical platform using the Imaris core software module and Imaris XT interfaced to MATLAB (Mat Works, Inc.). These tools allow the 3D measurement of cells without a pre-defined shape and with inconsistent fluorescence network components. Furthermore, this method will allow researchers who have extended expertise in biological systems, but not familiarity to computer applications, to perform quantification of morphological changes in cell dynamics.
Resumo:
This thesis develops an understanding of how propaganda entered the realm of journalism and popular culture in the United States during World War I through an examination of materials created by the Committee on Public Information (CPI). The CPI was a US governmental propaganda organisation created during World War I to persuade the nation to mobilise for war. Three of its divisions were chosen for this study: the Division of News (DoN), the Division of Four Minute Men (FMM) and the Division of Pictorial Publicity (DPP). Chapter 1 provides a general context for the thesis, outlines the research questions and details previous research on the CPI. Chapter 2 outlines the methods of analysis for interpreting the case study chapters and provides contextual information. The case studies are presented in Chapters 3, 4 and 5. These chapters are structured in the order of context, medium and content, and contain historical contextual information about each particular division, medialogical aspects of its propagated form and thematic groupings created from close reading of CPI materials. A semiotic analysis in the Peircian tradition is also performed on visual forms of propaganda in Chapter 5. Chapter 6 discusses how the expectations of persuasion, truth and amusement relate to each other when mediated in culture, using Lotman’s concept of the semiosphere. This further develops an understanding of propaganda as a cultural system in relation to other cultural systems – in this case, journalism and popular culture. Chapter 7 provides conclusions about the study, outlines relative strengths and weaknesses regarding the selection and deployment of methods, makes recommendations for future research, and summarises the key contributions of the thesis.
Resumo:
Ghassan Hage asserts the “core element of Australia’s colonial paranoia is a fear of loss of Europeanness or Whiteness and the lifestyle and privileges that are seen to emanate directly from them. This is a combination of the fragility of White European colonial identity in general and the specificity of the Australian situation” (419). This ‘White paranoia’ can be traced through a range of popular cultural formations, including contemporary Australian children’s literature. The Children’s Book Council of Australia (CBCA) awards an annual prize for “outstanding books which have the prime intention of documenting factual material with consideration given to imaginative presentation, interpretation and variation of style” (“Awards”) published in the preceding year. Although not often included in critical debates, non-fictional texts overtly seek to shape young readers’ understandings of their national context and their own location as national subjects. Thus, the books named as winners and honours of this prize from 2001-2010 provide a snapshot of which facts and whose fictions are salient in shaping the Australian nation in the twenty-first century. Using Hage’s concept of Australian colonial paranoia, this paper considers the relationship between ‘factual material’ and ‘imaginative presentation’ in the ongoing revision and renewal of national myths in award-winning Australian non-fiction for children.
Resumo:
Phenomenography is a qualitative research approach that seeks to explore variation in how people experience various aspects of their world. Phenomenography has been used in numerous information research studies that have explored various phenomena of interest in the library and information sphere. This paper provides an overview of the phenomenographic method and discusses key assumptions that underlie this approach to research. Aspects including data collection, data analysis and the outcomes of phenomenographic research are also detailed. The paper concludes with an illustration of how phenomenography was used in research to investigate students’ experiences of web-based information searching. The results of this research demonstrate how phenomenography can reveal variation, making it possible to develop greater understanding of the phenomenon as it was experienced, and to draw upon these experiences to improve and enhance current practice.
Resumo:
Spatial navigation requires the processing of complex, disparate and often ambiguous sensory data. The neurocomputations underpinning this vital ability remain poorly understood. Controversy remains as to whether multimodal sensory information must be combined into a unified representation, consistent with Tolman's "cognitive map", or whether differential activation of independent navigation modules suffice to explain observed navigation behaviour. Here we demonstrate that key neural correlates of spatial navigation in darkness cannot be explained if the path integration system acted independently of boundary (landmark) information. In vivo recordings demonstrate that the rodent head direction (HD) system becomes unstable within three minutes without vision. In contrast, rodents maintain stable place fields and grid fields for over half an hour without vision. Using a simple HD error model, we show analytically that idiothetic path integration (iPI) alone cannot be used to maintain any stable place representation beyond two to three minutes. We then use a measure of place stability based on information theoretic principles to prove that featureless boundaries alone cannot be used to improve localization above chance level. Having shown that neither iPI nor boundaries alone are sufficient, we then address the question of whether their combination is sufficient and - we conjecture - necessary to maintain place stability for prolonged periods without vision. We addressed this question in simulations and robot experiments using a navigation model comprising of a particle filter and boundary map. The model replicates published experimental results on place field and grid field stability without vision, and makes testable predictions including place field splitting and grid field rescaling if the true arena geometry differs from the acquired boundary map. We discuss our findings in light of current theories of animal navigation and neuronal computation, and elaborate on their implications and significance for the design, analysis and interpretation of experiments.
Resumo:
Organizations today invest in collaborative IT to engage in collaborative alliances to sustain or improve their competitive positions. Effective use of this collaborative IT in an alliance requires a deeper understanding of their governance structures. This effort is to ensure the sustainability of these alliances. Through the relational view of the firm, we suggest relational lateral IT-steering committees, relational IT operational committees, and relational IT performance management systems as IT governance structures for collaborative alliances. We then incorporate these structures, develop a model for approaches to governing collaborative IT, and evaluate the effectiveness for such governance structures in the IT-dependent alliances. We suggest that IT governance efforts of an alliance should contribute to their collaborative rent. We also suggest that the collaborative rent of an alliance would relate to the business value of its alliance partners. Field survey data containing 192 responses indicates a positive influence of the suggested IT governance efforts of the alliance on the collaborative rent of the alliance. The results also suggest a positive impact of the collaborative rent of the alliance on the business value of the alliance partners.
Resumo:
Technologies such as smart meters and electricity feedback are becoming an increasingly compelling focus for HCI researchers in light of rising power prices and peak demand. We argue, however, that a pre-occupation with the goal of demand management has limited the scope of design for these technologies. In this paper we present our work-in-progress investigating the potential value of socially sharing electricity information as a means of broadening the scope of design for these devices. This paper outlines some preliminary findings gathered from a design workshop and a series of qualitative interviews with householders in Brisbane, Australia, regarding their attitudes towards electricity feedback and sharing consumption information. Preliminary findings suggest that; (1) the social sharing of electricity feedback information has the potential to be of value in better informing consumption decisions, however; (2) the potential for sharing may be constrained by attitudes towards privacy, trust and the possibility of misinformation being shared. We conclude by outlining ideas for our future research on this topic and invite comments on these ideas.
Resumo:
Critical incidents offer a focus for exploratory research about human experiences, including information use and information literacy learning. This paper describes how critical incidents underpinned research about international students’ use of online information resources at two Australian universities. It outlines the development and application of an expanded critical incident approach (ECIA), explaining how ECIA built upon critical incident technique (CIT) and incorporated information literacy theory. It discusses points of expansion (differences) between CIT and ECIA. While CIT initially proved useful in structuring the research, the pilot study revealed methodological limitations. ECIA allowed more nuanced data analysis and the integration of reflection. The study produced a multifaceted word picture of international students’ experience of using online information resources to learn, and a set of critical findings about their information literacy learning needs. ECIA offers a fresh approach for researching information use, information experience, evidence-based practice, information literacy and informed learning.
Resumo:
There is still no comprehensive information strategy governing access to and reuse of public sector information, applying on a nationwide basis, across all levels of government – local, state and federal - in Australia. This is the case both for public sector materials generally and for spatial data in particular. Nevertheless, the last five years have seen some significant developments in information policy and practice, the result of which has been a considerable lessening of the barriers that previously acted to impede the accessibility and reusability of a great deal of spatial and other material held by public sector agencies. Much of the impetus for change has come from the spatial community which has for many years been a proponent of the view “that government held information, and in particular spatial information, will play an absolutely critical role in increasing the innovative capacity of this nation.”1 However, the potential of government spatial data to contribute to innovation will remain unfulfilled without reform of policies on access and reuse as well as the pervasive practices of public sector data custodians who have relied on government copyright to justify the imposition of restrictive conditions on its use.
Resumo:
Most social network users hold more than one social network account and utilize them in different ways depending on the digital context. For example, friendly chat on Facebook, professional discussion on LinkedIn, and health information exchange on PatientsLikeMe. Thus many web users need to manage many disparate profiles across many distributed online sources. Maintaining these profiles is cumbersome, time consuming, inefficient, and leads to lost opportunity. In this paper we propose a framework for multiple profile management of online social networks and showcase a demonstrator utilising an open source platform. The result of the research enables a user to create and manage an integrated profile and share/synchronise their profiles with their social networks. A number of use cases were created to capture the functional requirements and describe the interactions between users and the online services. An innovative application of this project is in public health informatics. We utilize the prototype to examine how the framework can benefit patients and physicians. The framework can greatly enhance health information management for patients and more importantly offer a more comprehensive personal health overview of patients to physicians.