918 resultados para Information Models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physical implementation of quantum information processing is one of the major challenges of current research. In the last few years, several theoretical proposals and experimental demonstrations on a small number of qubits have been carried out, but a quantum computing architecture that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is still lacking. In particular, a major ultimate objective is the construction of quantum simulators, yielding massively increased computational power in simulating quantum systems. Here we investigate promising routes towards the actual realization of a quantum computer, based on spin systems. The first one employs molecular nanomagnets with a doublet ground state to encode each qubit and exploits the wide chemical tunability of these systems to obtain the proper topology of inter-qubit interactions. Indeed, recent advances in coordination chemistry allow us to arrange these qubits in chains, with tailored interactions mediated by magnetic linkers. These act as switches of the effective qubit-qubit coupling, thus enabling the implementation of one- and two-qubit gates. Molecular qubits can be controlled either by uniform magnetic pulses, either by local electric fields. We introduce here two different schemes for quantum information processing with either global or local control of the inter-qubit interaction and demonstrate the high performance of these platforms by simulating the system time evolution with state-of-the-art parameters. The second architecture we propose is based on a hybrid spin-photon qubit encoding, which exploits the best characteristic of photons, whose mobility is exploited to efficiently establish long-range entanglement, and spin systems, which ensure long coherence times. The setup consists of spin ensembles coherently coupled to single photons within superconducting coplanar waveguide resonators. The tunability of the resonators frequency is exploited as the only manipulation tool to implement a universal set of quantum gates, by bringing the photons into/out of resonance with the spin transition. The time evolution of the system subject to the pulse sequence used to implement complex quantum algorithms has been simulated by numerically integrating the master equation for the system density matrix, thus including the harmful effects of decoherence. Finally a scheme to overcome the leakage of information due to inhomogeneous broadening of the spin ensemble is pointed out. Both the proposed setups are based on state-of-the-art technological achievements. By extensive numerical experiments we show that their performance is remarkably good, even for the implementation of long sequences of gates used to simulate interesting physical models. Therefore, the here examined systems are really promising buildingblocks of future scalable architectures and can be used for proof-of-principle experiments of quantum information processing and quantum simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural networks can be regarded as statistical models, and can be analysed in a Bayesian framework. Generalisation is measured by the performance on independent test data drawn from the same distribution as the training data. Such performance can be quantified by the posterior average of the information divergence between the true and the model distributions. Averaging over the Bayesian posterior guarantees internal coherence; Using information divergence guarantees invariance with respect to representation. The theory generalises the least mean squares theory for linear Gaussian models to general problems of statistical estimation. The main results are: (1)~the ideal optimal estimate is always given by average over the posterior; (2)~the optimal estimate within a computational model is given by the projection of the ideal estimate to the model. This incidentally shows some currently popular methods dealing with hyperpriors are in general unnecessary and misleading. The extension of information divergence to positive normalisable measures reveals a remarkable relation between the dlt dual affine geometry of statistical manifolds and the geometry of the dual pair of Banach spaces Ld and Ldd. It therefore offers conceptual simplification to information geometry. The general conclusion on the issue of evaluating neural network learning rules and other statistical inference methods is that such evaluations are only meaningful under three assumptions: The prior P(p), describing the environment of all the problems; the divergence Dd, specifying the requirement of the task; and the model Q, specifying available computing resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural networks are statistical models and learning rules are estimators. In this paper a theory for measuring generalisation is developed by combining Bayesian decision theory with information geometry. The performance of an estimator is measured by the information divergence between the true distribution and the estimate, averaged over the Bayesian posterior. This unifies the majority of error measures currently in use. The optimal estimators also reveal some intricate interrelationships among information geometry, Banach spaces and sufficient statistics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is currently considerable interest in developing general non-linear density models based on latent, or hidden, variables. Such models have the ability to discover the presence of a relatively small number of underlying `causes' which, acting in combination, give rise to the apparent complexity of the observed data set. Unfortunately, to train such models generally requires large computational effort. In this paper we introduce a novel latent variable algorithm which retains the general non-linear capabilities of previous models but which uses a training procedure based on the EM algorithm. We demonstrate the performance of the model on a toy problem and on data from flow diagnostics for a multi-phase oil pipeline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian ``ink generators'' spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the Expectation Maximization (EM) algorithm that maximizes the likelihood of the model generating the data. This approach has many advantages. (1) After identifying the model most likely to have generated the data, the system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style. (2) During the process of explaining the image, generative models can perform recognition driven segmentation. (3) The method involves a relatively small number of parameters and hence training is relatively easy and fast. (4) Unlike many other recognition schemes it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. We have demonstrated our method of fitting models to images does not get trapped in poor local minima. The main disadvantage of the method is it requires much more computation than more standard OCR techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This technical report builds on previous reports to derive the likelihood and its derivatives for a Gaussian Process with a modified Bessel function based covariance function. The full derivation is shown. The likelihood (with gradient information) can be used in maximum likelihood procedures (i.e. gradient based optimisation) and in Hybrid Monte Carlo sampling (i.e. within a Bayesian framework).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gaussian Processes provide good prior models for spatial data, but can be too smooth. In many physical situations there are discontinuities along bounding surfaces, for example fronts in near-surface wind fields. We describe a modelling method for such a constrained discontinuity and demonstrate how to infer the model parameters in wind fields with MCMC sampling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop an approach for a sparse representation for Gaussian Process (GP) models in order to overcome the limitations of GPs caused by large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the model. Experimental results on toy examples and large real-world datasets indicate the efficiency of the approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most traditional methods for extracting the relationships between two time series are based on cross-correlation. In a non-linear non-stationary environment, these techniques are not sufficient. We show in this paper how to use hidden Markov models to identify the lag (or delay) between different variables for such data. Adopting an information-theoretic approach, we develop a procedure for training HMMs to maximise the mutual information (MMI) between delayed time series. The method is used to model the oil drilling process. We show that cross-correlation gives no information and that the MMI approach outperforms maximum likelihood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous studies find that monetary models of exchange rates cannot beat a random walk model. Such a finding, however, is not surprising given that such models are built upon money demand functions and traditional money demand functions appear to have broken down in many developed countries. In this article, we investigate whether using a more stable underlying money demand function results in improvements in forecasts of monetary models of exchange rates. More specifically, we use a sweep-adjusted measure of US monetary aggregate M1 which has been shown to have a more stable money demand function than the official M1 measure. The results suggest that the monetary models of exchange rates contain information about future movements of exchange rates, but the success of such models depends on the stability of money demand functions and the specifications of the models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates concreteness effects in tasks requiring short-term retention. Concreteness effects were assessed in serial recall, matching span, order reconstruction, and free recall. Each task was carried out both in a control condition and under articulatory suppression. Our results show no dissociation between tasks that do and do not require spoken output. This argues against the redintegration hypothesis according to which lexical-semantic effects in short-term memory arise only at the point of production. In contrast, concreteness effects were modulated by task demands that stressed retention of item versus order information. Concreteness effects were stronger in free recall than in serial recall. Suppression, which weakens phonological representations, enhanced the concreteness effect with item scoring. In a matching task, positive effects of concreteness occurred with open sets but not with closed sets of words. Finally, concreteness effects reversed when the task asked only for recall of word positions (as in the matching task), when phonological representations were weak (because of suppression), and when lexical semantic representations overactivated (because of closed sets). We interpret these results as consistent with a model where phonological representations are crucial for the retention of order, while lexical-semantic representations support maintenance of item identity in both input and output buffers.